Celestial Mechanics and Dynamical Astronomy

, Volume 88, Issue 3, pp 229–244 | Cite as

A Note on Second Species Solutions Generated from p–q Resonant Orbits

  • Esther Barrabés
  • Gerard Gómez


The first image under the flow of the restricted three-body problem of the pq resonant strips — that appear in the study of the pq resonant orbits — do not have, in general, intersection with the strip. In this paper we show some particular situations in which the above intersections exist for some very simple pq resonant orbits which, at the same time, are periodic second species solutions.

periodic orbits restricted three-body problem second species solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrabés, E. and Gómez, G.: 2002, 'Spatial p-q resonant orbits of the RTBP', Celest. Mech. Dyn. & Astr. 84(4), 387–407.Google Scholar
  2. Barrabés, E. and Gómez, G.: 2003, 'Three dimensional p-q resonant orbits close to second species solutions', Celest. Mech. & Dyn. Astr. 85(1), 145–174.Google Scholar
  3. Belbruno, E. and Marsden, B.: 1997, 'Resonance hopping in comets', Astron. J. 113(4), 1433–1444.Google Scholar
  4. Bruno, A. D.: 1994, The Restricted 3-Body Problem: Plane Periodic Orbits (engish translation of Bruno 1990). De Gruyter Expositions in Mathematics 17, Walter de Gruyter, Berlin, New York.Google Scholar
  5. Font, J., Nunes, A. and Simó, C.: 2002, 'Consecutive quasi-collisions in the planar circular RTBP', Nonlinearity 15(1), 115–142.Google Scholar
  6. Gómez, G. and Ollé, M.: 1986, 'A note on the elliptic restricted three-body problem', Celest. Mech. 39(1), 33–55.Google Scholar
  7. Hénon, M.: 1968, 'Sur les orbites interplanetaires qui rencontrent deux fois la terre', Bull. Astron., III. Ser. 3, 377–402.Google Scholar
  8. Hénon, M.: 1997, Generating Families in the Restricted Three-Body Problem, Springer-Verlag, Berlin.Google Scholar
  9. Koon, W. S., Lo, M. W., Marsden, J. E. and Ross, S. D.: 2001, 'Resonance and capture of Jupiter comets', Celest. Mech. & Dyn. Astr. 81(1-2), 27–38.Google Scholar
  10. Poincaré, H.: 1899, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Tome III.Google Scholar
  11. Yen, C. L.: 1985, 'Ballistic Mercury orbiter mission via Venus and Mercury gravity assist', AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 85-346.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Esther Barrabés
    • 1
  • Gerard Gómez
    • 2
  1. 1.Departament d’Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain
  2. 2.Departament de Matemàtica Aplicada i AnàlisiUniversitat de Barcelona, IEECBarcelonaSpain

Personalised recommendations