Celestial Mechanics and Dynamical Astronomy

, Volume 87, Issue 4, pp 353–369 | Cite as

Solution of the Sitnikov Problem

  • S. B. Faruque


A new analytic expression for the position of the infinitesimal body in the elliptic Sitnikov problem is presented. This solution is valid for small bounded oscillations in cases of moderate primary eccentricities. We first linearize the problem and obtain solution to this Hill's type equation. After that the lowest order nonlinear force is added to the problem. The final solution to the equation with nonlinear force included is obtained through first the use of a Courant and Snyder transformation followed by the Lindstedt–Poincaré perturbation method and again an application of Courant and Snyder transformation. The solution thus obtained is compared with existing solutions, and satisfactory agreement is found.

Sitnikov problem analytic solution perturbation celestial mechanics restricted three-body problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, V. I.: 1963, 'Small denominators and problems of stability of motion in classical and celestial mechanics', Usp. Mat. Nauk. 18, 91-192.Google Scholar
  2. Belbruno, E., Llibre, J. and Olle, M.: 1994, 'On the families of periodic orbits which bifurcate from the circular Sitnikov motions', Celest. Mech. Dyn. Astr. 60, 99-129.Google Scholar
  3. Brouwer, D. and Clemence, G.: 1961, Methods of Celestial Mechanics, Academic Press, New York.Google Scholar
  4. Corbera, M. and Llibre, J.: 2000, 'Periodic orbits of the Sitnikov problem via a Poincare map', Celest. Mech. Dyn. Astr. 77, 273-303.Google Scholar
  5. Corbera, M. and Llibre, J.: 2001, 'On symmetric periodic orbits of the elliptic Sitnikov problem via the analytical continuation method', Contemp. Math. (in press).Google Scholar
  6. Courant, E. D., Livingston, M. S. and Snyder, H. S.: 1952, 'The strong-focusing synchrotron-a new high energy accelerator', Phys. Rev. 88, 1190-1196.Google Scholar
  7. Dvorak, R.: 1993, 'Numerical results to the Sitnikov problem', Celest. Mech. Dyn. Astr. 56, 71-80.Google Scholar
  8. Faruque, S. B.: 2002, 'Axial oscillation of a planetoid in restricted three body problem: the circular Sitnikov problem', B. Astron. Soc. India 30, 895-909.Google Scholar
  9. Hagel, J.: 1992, 'A new analytic approach to the Sitnikov problem', Celest. Mech. Dyn. Astr. 53, 267-292.Google Scholar
  10. Jalali, M. A. and Pourtakdoust, S. H.: 1997, 'Regular and chaotic solutions of the Sitnikov problem near the 3/2 commensurability', Celest. Mech. Dyn. Astr. 68, 151-162.Google Scholar
  11. Jose, J. V. and Saletan, E. J.: 1998, Classical Dynamics, Cambridge University Press, Cambridge.Google Scholar
  12. Liu, J. and Sun, Y.: 1990, 'On the Sitnikov problem', Celest. Mech. Dyn. Astr. 49, 285-302.Google Scholar
  13. MacMillan, W. D.: 1913, 'An integrable case in the restricted problem of three bodies', Astron. J. 27, 11-13.Google Scholar
  14. Nayfeh, A. H.: 2000, Perturbation Methods, John Wiley & Sons, Inc., New York.Google Scholar
  15. Olle, M. and Pacha, J. R.: 1999, 'The 3D elliptic restricted three-body problem: periodic orbits which bifurcate from limiting restricted problems', Astron. Astrophys. 351, 1149-1164.Google Scholar
  16. Perdios, E. and Markellos, V. V.: 1988, 'Stability and bifurcations of Sitnikov motions', Celest.Mech. Dyn. Astr. 42, 187-200.Google Scholar
  17. Sitnikov, K. A.: 1960, 'Existence of oscillating motion for the three-body problem', Dokl. Akad. Nauk. USSR 133, 303-306.Google Scholar
  18. Whittaker, E. T.: 1988, A treatise on the analytical dynamics, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. B. Faruque
    • 1
  1. 1.Department of PhysicsShah Jalal University of Science and TechnologySylhetBangladesh, e-mail

Personalised recommendations