Advertisement

Catalysis Letters

, Volume 96, Issue 3–4, pp 147–151 | Cite as

Enantioselective Hydrogenation Using Cinchona-Modified Pt/γ-Al2O3 Catalysts: Comparison of the Reaction of Ethyl Pyruvate and Buta-2,3-dione

  • Xiabao Li
  • Nicholas Dummer
  • Robert Jenkins
  • Richard P.K. Wells
  • Peter B. Wells
  • David J. Willock
  • Stuart H. Taylor
  • Peter Johnston
  • Graham J. HutchingsEmail author
Article

Abstract

The enantioselective hydrogenation of buta-2,3-dione to 3-hydroxy-buta-2-one and ethyl pyruvate to ethyl lactate are compared using cinchona-modified Pt/γ-Al2O3 catalysts. The reactions were carried out in a range of solvents and both reactants gave the same linear relationship between enantiomeric excess (e.e.) and the dielectric constant of the solvent. The e.e. for the 3-hydroxy-buta-2-one is lower than that for ethyl pyruvate. For both reactants there is an optimal concentration of the cinchona modifier but the optimal concentration required for the hydrogenation of buta-2,3-dione is approximately an order of magnitude higher than that required for the hydrogenation of ethyl pyruvate. The hydrogenation of buta-2,3-dione in acetic acid as solvent leads to a suppression in the e.e. with an enhancement in rate, whereas the reaction of ethyl pyruvate in acetic acid leads to an enhancement in e.e. The e.e. for 3-hydroxy-buta-2-one formation is independent of conversion in the initial period of the reaction which contrasts markedly with the observed initial induction period for ethyl lactate formation. The results are discussed in terms of the interaction of the reactants with the cinchona alkaloid adsorbed on the Pt surface.

enantioselective hydrogenation ethyl pyruvate buta-2,3-dione cinchonidine-modified Pt catalyst cinchonine-modified Pt catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Baiker, J. Mol. Catal. A 163 (2000) 205.Google Scholar
  2. [2]
    H.U. Blaser, J.P. Jalett, M. Müller and M. Studer, Catal. Today 37 (1997) 441.Google Scholar
  3. [3]
    P.B. Wells and A.G. Wilkinson, Top. Catal., 5 (1998) 39.Google Scholar
  4. [4]
    M. von Arx, T. Mallat and A. Baiker, Top. Catal. 19 (2002) 75.Google Scholar
  5. [5]
    P. Kukula and L. Cerveny, J. Mol. Catal. A 185 (2002) 195.Google Scholar
  6. [6]
    T. Sugimura, S. Nakayama and A. Tai, Bull. Chem. Soc. Jpn. 75 (2002) 355.Google Scholar
  7. [7]
    T. Osawa, S. Sakai, T. Harada and O. Takayashu, Chem. Lett. (2001) 392.Google Scholar
  8. [8]
    M. Schürch, N. Künzle, T. Mallat and A. Baiker, J. Catal. 176 (1998) 569.Google Scholar
  9. [9]
    G.J. Hutchings, Chem. Commun. (1999) 301.Google Scholar
  10. [10]
    X. Zuo, H. Liu and M. Liu, Tetrahedron Lett. 39 (1998) 1941.Google Scholar
  11. [11]
    I.M. Sutherland, A. Ibbotson, R.B. Moyes and P.B. Wells, J. Catal. 125 (1990) 77.Google Scholar
  12. [12]
    H.-U. Blaser, H.P. Jallet, D.M. Monti, A. Baiker and J.T. Wehrli, Stud. Surf. Sci. Catal. 67 (1991) 147.Google Scholar
  13. [13]
    G. Webb and P.B. Wells, Catal. Today 12 (1992) 319.Google Scholar
  14. [14]
    P.A. Meheux, A. Ibbotson and P.B. Wells, J. Catal. 128 (1991) 387.Google Scholar
  15. [15]
    H.-U. Blaser, H.P. Jallet, M. Muller and M. Studer, Catal. Today 37 (1997) 441.Google Scholar
  16. [16]
    T. Burgi and A. Baiker, J. Am. Chem. Soc. 120 (1998) 12920.Google Scholar
  17. [17]
    W.A.H. Vermeer, A. Fulford, P. Johnston and P.B. Wells, J. Chem. Soc., Chem. Commun. (1993) 1053.Google Scholar
  18. [18]
    M. Stürch, O. Schwalm, T. Mallat, J. Weber and A. Baiker, J. Catal. 169 (1997) 275.Google Scholar
  19. [19]
    M. Studer, S. Bukhardt and H.-U. Blaser, Chem. Commun. (1999) 1727.Google Scholar
  20. [20]
    B. Török, K. Felföldi, K. Balàzsik and M. Bartók, Chem. Commun. (1999) 1725.Google Scholar
  21. [21]
    I.M. Sutherland, A. Ibbotson, R.B. Moyes and P.B. Wells, J. Catal. 125 (1990) 77.Google Scholar
  22. [22]
    P.A. Meheux, A. Ibbotson and P.B.Wells, J. Catal. 128 (1991) 387.Google Scholar
  23. [23]
    J.L. Margitfalvi, M. Hegedus and E. Tfirst, Tetrahedron: Asymmetry 7 (1996) 571.Google Scholar
  24. [24]
    U.K. Singh, R.N. Landau, Y. Sun, C. Le Blond, D.G. Blackmond, S.K. Tanialyan and R.L. Augustine, J. Catal. 154 (1995) 91.Google Scholar
  25. [25]
    J. Wang, Y. Sun, C. Le Blond, R.N. Landau and D.G. Blackmond, J. Catal. 161 (1996) 752.Google Scholar
  26. [26]
    Y. Sun, J. Wang, C. Le Blond, R.N. Landau and D.G. Blackmond, J. Catal. 161 (1996) 759.Google Scholar
  27. [27]
    T. Mallat, Z. Bodnar, B. Minder, K. Bovszcky and A. Baiker, J. Catal. 168 (1997) 183.Google Scholar
  28. [28]
    D.G. Blackmond, J. Catal. 176 (1998) 267.Google Scholar
  29. [29]
    T. Mallat and A. Baiker, J. Catal. 176 (1998) 271.Google Scholar
  30. [30]
    X. Li, R.P.K. Wells, P.B. Wells and G.J. Hutchings, J. Catal. 221 (2004) 653.Google Scholar
  31. [31]
    J.A. Slipszenko, S.P. Griffiths, P. Johnston, K.E. Simon, W.A.H. Vermeer and P.B. Wells, J. Catal. 179 (1998) 267.Google Scholar
  32. [32]
    D. Ferri, T. Burgi and A. Baiker, J. Chem. Soc., Perkin Trans. 2 (1999) 1305.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Xiabao Li
    • 1
  • Nicholas Dummer
    • 1
  • Robert Jenkins
    • 1
  • Richard P.K. Wells
    • 1
  • Peter B. Wells
    • 1
  • David J. Willock
    • 1
  • Stuart H. Taylor
    • 1
  • Peter Johnston
    • 2
  • Graham J. Hutchings
    • 1
    Email author
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.Johnson MattheyHertsUK

Personalised recommendations