Advertisement

Catalysis Letters

, Volume 96, Issue 3–4, pp 113–116 | Cite as

Magnesia–Carbon Nanotubes (MgO–CNTs) Nanocomposite: Novel Support of Ru Catalyst for the Generation of COx-Free Hydrogen from Ammonia

  • S.F. Yin
  • B.Q. Xu
  • S.J. Wang
  • C.F. Ng
  • C.T. Au
Article

Abstract

Magnesia–carbon nanotubes (abbreviated as MgO–CNTs) nanocomposites were prepared by impregnation of CNTs with Mg(NO3)2·6H2O in ethanol solution, followed by drying at 353 K and calcination at 873 K, respectively. The nanocomposites are thermally more stable than CNTs in a H2 flow. The use of the nanocomposites as support yielded more efficient Ru catalysts for the generation of CO x -free hydrogen from NH3 decomposition.

magnesia–carbon nanotubes nanocomposite ruthenium catalyst ammonia decomposition hydrogen manufacture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.A. Hards, Intern. J. Hydrogen Energy 21 (1996) 777.Google Scholar
  2. [2]
    J. Fouletier, Actul. Chimique (2002) 138.Google Scholar
  3. [3]
    S. Gamburzev and A.J. Appleby, J. Power Sources 107 (2002) 5.Google Scholar
  4. [4]
    H. Chang, J.R. Kim, J.H. Cho, H.K. Kim and K.H. Choi, Solid State Ionics 148 (2002) 601.Google Scholar
  5. [5]
    H.M. Cheng, Q.H. Yang and C. Liu, Carbon 39 (2001) 1447.Google Scholar
  6. [6]
    S.E. Hsu, V.M. Beibutian and M.T. Yeh, J. Alloy. Compd. 330 (2002) 882.Google Scholar
  7. [7]
    Z.G. Qi, C.Z. He and A. Kaufman, Electro. Solid State Lett. 4 (2001) A204.Google Scholar
  8. [8]
    J.J. Baschuk and X.G. Li, Int. J. Energy Res. 25 (2001) 695.Google Scholar
  9. [9]
    W. Raróg, D. Smigiel, Z. Kowalczyk, S. Jodzis and J. Zieliński, J. Catal. 218 (2003) 465.Google Scholar
  10. [10]
    T.V. Choudhary, C. Svadinaragana and D.W. Goodman, Catal. Lett. 72 (2001) 197.Google Scholar
  11. [11]
    T.V. Choudhary and D.W. Goodman, Catal. Today 77 (2002) 65.Google Scholar
  12. [12]
    A.S. Chellapa, C.M. Fischer and W.J. Thomson, Appl. Catal. A 227 (2002) 231.Google Scholar
  13. [13]
    D.A. Goetsch and S.J. Schmit, WO Patent 0 187 770, 2001.Google Scholar
  14. [14]
    K. Kordesch, V. Hacker, R. Fankhauset and G. Faleschini, WO Patent 0 208 117, 2002.Google Scholar
  15. [15]
    S.F. Yin, B.Q. Xu, C.F. Ng and C.T. Au, Appl. Catal. B 48 (2004) 237.Google Scholar
  16. [16]
    S.F. Yin, B.Q. Xu, C.F. Ng and C.T. Au, J. Catal.. in press.Google Scholar
  17. [17]
    H.S. Zeng, K. Inazu and K. Aika, Appl. Catal. A 219 (2001) 235.Google Scholar
  18. [18]
    M.C.J. Bradford, P.E. Fanning and M.A. Vannice, J. Catal.A. 172 (1997) 479.Google Scholar
  19. [19]
    K. Aika, A. Ohya, A. Ozaki, Y. Inoue and I. Yasmuri, J. Catal. 92 (1985) 305.Google Scholar
  20. [20]
    K. Tanabe, M. Misono, Y. Ono and H. Hattori, New Solid Acids and Bases(Kodansha-Elsevier, 1989).Google Scholar
  21. [21]
    K. Aika, J. Kubota, Y. Kadowaki, Y. Niwa and Y. Izumi, Appl. Surf. Sci. 121/122 (1997) 488.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S.F. Yin
    • 1
    • 2
  • B.Q. Xu
    • 1
  • S.J. Wang
    • 3
  • C.F. Ng
    • 2
  • C.T. Au
    • 2
  1. 1.Innovative Catalysis Program, Key Lab of Organic Electronics & Molecular Engineering, Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Department of Chemistry, Center for Surface Analysis and ResearchHong Kong Baptist UniversityKowloon TongHong Kong, China
  3. 3.Analysis and Testing CenterXiamen UniversityXiamenChina

Personalised recommendations