Advertisement

Catalysis Letters

, Volume 96, Issue 1–2, pp 13–22 | Cite as

The Role of Adsorbate–Adsorbate Interactions in the Rate Controlling Step and the Most Abundant Reaction Intermediate of NH3 Decomposition on Ru

  • A.B. Mhadeshwar
  • J.R. Kitchin
  • M.A. Barteau
  • D.G. Vlachos
Article

Abstract

N–N adsorbate–adsorbate interactions on a Ru(0001) surface are first estimated using quantum mechanical density functional theory (DFT) calculations, and subsequently incorporated, for the first time, in a detailed microkinetic model for NH3 decomposition on Ru using the unity bond index-quadratic exponential potential (UBI–QEP) method. DFT simulations indicate that the cross N–H interactions are relatively small. Microkinetic model predictions are compared to ultra-high vacuum temperature programmed desorption and atmospheric fixed bed reactor data. The microkinetic model with N–N interactions captures the experimental features quantitatively. It is shown that the N–N interactions significantly alter the rate determining step, the most abundant reaction intermediate, and the maximum N*-coverage, compared to mechanisms that ignore adsorbate–adsorbate interactions.

microkinetic modelling thermodynamic consistency rate determing step most abundant reaction intermediate adsorbate–adsorbate interactions density functional theory ammonia hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Ganley, E. G. Seebauer and R. I. Masel, AIChE J. 50 (2004) 829.Google Scholar
  2. [2]
    F. Haber and G. van Oordt, Z. Anorg. Chem. 43 (1904) 111.Google Scholar
  3. [3]
    F. Haber and G. van Oordt, Z. Anorg. Chem. 44 (1905) 341.Google Scholar
  4. [4]
    W. Tsai and W. H. Weinberg, J. Phys. Chem. 91 (1987) 5302.Google Scholar
  5. [5]
    S. Dahl, P. A. Taylor, E. Tornquist and I. Chorkendorff, J. Catal. 178 (1998) 679.Google Scholar
  6. [6]
    C. J.H. Jacobsen, S. Dahl, B. S. Clausen, S. Bahn, A. Logadottir and J. K. Norskov, J. Am. Chem. Soc. 123 (2001) 8404.Google Scholar
  7. [7]
    J. C. Ganley, E. G. Seebauer and R. I. Masel, (2003) in preparation.Google Scholar
  8. [8]
    S. Dahl, E. Tornquist and I. Chorkendorff, J. Catal. 192 (2000) 381.Google Scholar
  9. [9]
    O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler and G. Ertl, J. Catal. 165 (1997) 33.Google Scholar
  10. [10]
    O. Hinrichsen, F. Rosowski, M. Muhler and G. Ertl, Stud. Surf. Sci. Catal. 109 (1997) 389.Google Scholar
  11. [11]
    L. Diekhoner, H. Mortensen, A. Baurichter and A. C. Luntz, J. Vac. Sci. Tech. A 18 (2000) 1509.Google Scholar
  12. [12]
    L. Diekhoner, H. Mortensen, A. Baurichter and A. C. Luntz, J. Chem. Phys. 115 (2001) 3356.Google Scholar
  13. [13]
    S. Dahl, A. Logadottir, C. J. H. Jacobsen and J. K. Norskov, Appl. Catal. A: Gen. 222 (2001) 19.Google Scholar
  14. [14]
    M. C. J. Bradford, P. E. Fanning and M. A. Vannice, J. Catal. 172 (1997) 479.Google Scholar
  15. [15]
    S. R. Deshmukh, A. B. Mhadeshwar and D. G. Vlachos, Ind. Eng. Chem. Res. (2003) in press.Google Scholar
  16. [16]
    S. Dahl, J. Sehested, C. J. H. Jacobsen, E. Tornquist and I. Chorkendorff, J. Catal. 192 (2000) 391.Google Scholar
  17. [17]
    L. Diekhoner, A. Baurichter, H. Mortensen and A. C. Luntz, J. Chem. Phys. 112 (2000) 2507.Google Scholar
  18. [18]
    M. Boudart and G. Djega–Mariadassou, Kinetics of Heterogeneous Catalytic Reactions (Princeton University Press, Princeton, 1984).Google Scholar
  19. [19]
    H. Dietrich, K. Jacobi and G. Ertl, Surf. Sci. 352 (1996) 138.Google Scholar
  20. [20]
    H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 106 (1997) 9313.Google Scholar
  21. [21]
    S. Schwegmann, A. P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi and G. Ertl, Chem. Phys. Lett. 264 (1997) 680.Google Scholar
  22. [22]
    H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 105 (1996) 8944.Google Scholar
  23. [23]
    H. Rauscher, K. L. Kostov and D. Menzel, Chem. Phys. 177 (1993) 473.Google Scholar
  24. [24]
    K. Jacobi, Phys. Stat. Sol. A 177 (2000) 37.Google Scholar
  25. [25]
    B. Hammer, Phys. Rev.B 63 (2001) 205423(1).Google Scholar
  26. [26]
    J. J. Mortensen, Y. Morikawa, B. Hammer and J. K. Norskov, J. Catal. 169 (1997) 85.Google Scholar
  27. [27]
    A. Logadottir and J. K. Norskov, J. Catal. 220 (2003) 273.Google Scholar
  28. [28]
    I. Alstrup, I. Chorkendorff and S. Ullmann, J. Catal. 168 (1997) 217.Google Scholar
  29. [29]
    H. Dietrich, P. Geng, K. Jacobi and G. Ertl, J. Chem. Phys. 104 (1996) 375.Google Scholar
  30. [30]
    G. Ertl, Heterogeneous catalysis on the atomic scale. in: The Chemical Record, Vol. 1 (The Japan Chemical Journal Forum and John Wiley &; Sons(NewYork, 2000) p. 33.Google Scholar
  31. [31]
    P. Stoltze and J. K. Norskov, Phys. Rev. Lett. 55 (1985) 2502.Google Scholar
  32. [32]
    S. R. Deshmukh, A. B. Mhadeshwar, M. Lebedeva and D. G. Vlachos, Int. J. Multiscale Comp. Eng. (2004) accepted.Google Scholar
  33. [33]
    D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.Google Scholar
  34. [34]
    B. Hammer, O. H. Nielsen, J. J. Mortensen, L. Bengtsson, L. B. Hansen, A. C. E. Madsen, Y. Morikawa, T. Bligaard and A. Christensen, DACAPO version 2.7 (CAMP, Technical University, Denmark).Google Scholar
  35. [35]
    C. J. Zhang, M. Lynch and P. Hu, Surf. Sci. 496 (2002) 221.Google Scholar
  36. [36]
    D. J. Dooling, R. J. Nielsen and L. J. Broadbelt, Chem. Eng. Sci. 54 (1999) 3399.Google Scholar
  37. [37]
    Y. K. Park, P. Aghalayam and D. G. Vlachos, J. Phys. Chem. A 103 (1999) 8101.Google Scholar
  38. [38]
    P. Aghalayam, Y. K. Park and D. G. Vlachos, AIChE J. 46 (2000) 2017.Google Scholar
  39. [39]
    J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoske and A. A. Trevino, The Microkinetics of Heterogeneous Catalysis (American Chemical Society, Washington, DC, 1993).Google Scholar
  40. [40]
    E. Shustorovich and A. T. Bell, Surf. Sci. Lett. 259 (1991) L791.Google Scholar
  41. [41]
    E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31 (1998) 1.Google Scholar
  42. [42]
    E. Shustorovich, Adv. Catal. 37 (1990) 101.Google Scholar
  43. [43]
    A. B. Mhadeshwar, H. Wang and D. G. Vlachos, J. Phys. Chem.B 107 (2003)12721.Google Scholar
  44. [44]
    T. V. Choudhary, C. Sivadinarayana and D. W. Goodman, Catl. Lett. 72 (2001) 197.Google Scholar
  45. [45]
    L. Diekhoner, H. Mortensen, A. Baurichter, A. C. Luntz and B. Hammer, Phys. Rev. Lett. 84 (2000) 4906.Google Scholar
  46. [46]
    H. Shi, K. Jacobi and G. Ertl, J. Chem. Phys. 99 (1993) 9248.Google Scholar
  47. [47]
    G. Lauth, E. Schwarz and K. Christmann, J. Chem. Phys. 91 (1989) 3729.Google Scholar
  48. [48]
    N. Savargaonkar, R. L. Narayan, M. Pruski, D. O. Uner and T. S. King, J. Catal. 178 (1998) 26.Google Scholar
  49. [49]
    R. L. Narayan and T. S. King, Thermochim. Acta 312 (1998) 105.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • A.B. Mhadeshwar
    • 1
  • J.R. Kitchin
    • 1
  • M.A. Barteau
    • 1
  • D.G. Vlachos
    • 1
  1. 1.Department of Chemical Engineering, Center for Catalytic Science and TechnologyUniversity of DelawareNewark

Personalised recommendations