Advertisement

Catalysis Letters

, Volume 95, Issue 3–4, pp 211–217 | Cite as

Nitrogen Production Efficiency for Acetaldehyde and Propionaldehyde in Lean NO x Reduction over Anatase Titania

  • Anguelina P. Kozlova
  • Hiu-Ying Law
  • Mayfair C. Kung
  • Harold H. Kung
Article

Abstract

The nitrogen formation efficiencies, defined as the number of nitrogen molecules formed for every reductant molecule consumed were determined for acetaldehyde and propionaldehyde in the reduction of NO2 under lean conditions over anatase TiO2. The efficiency increased with increasing NO2/reductant in the feed, reaching 0.61 ± 0.05 for NO2/acetaldehyde between 1.5 and 3.0 and 0.85 ± 0.08 for NO2/propionaldehyde between 3.8 and 5.7. Simultaneously, the CO/CO2 ratio as well as the small concentration of N2O in the product stream increased. The results suggested that at higher NO2/reductant ratios, the reaction between the reductant and adsorbed NO2 accounted for a large majority of the reaction. The results were consistent with the IR results, which showed that surface nitro groups reacted readily with acetaldehyde. The implications of these results on the NO2 reduction mechanism were discussed.

itania NOx reduction acetaldehyde propionaldehyde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Held, A. Konig, T. Richter and L. Puppe, SAE paper 900496 (1990).Google Scholar
  2. 2.
    M. Iwamoto, H. Yahiro, Y. Yu-u, S. Sundo and N. Mizuno, Shokubai (Catalyst) 32 (1990) 430.Google Scholar
  3. 3.
    J.H. Lee, A. Yezerets, M.C. Kung and H.H. Kung, Chem. Commun. (2001) 1404.Google Scholar
  4. 4.
    B.M. Penetrante, R.M. Brusasco, B.T. Merritt, W.J. Pitz, G.E. Vogtlin, E.N. Balko, K.E. Voss, C.Z. Wen, M.C. Kung and H.H. Kung, SAE paper no. 98FL577 (1998).Google Scholar
  5. 5.
    A.G. Panov, R.G. Tonkyn, M.L. Malmer, C.H.F. Peden, A. Malkin and J.W. Hoard, SAE 2001-01-3513.Google Scholar
  6. 6.
    P. Forzatti and L. Lietti, Heterogeneous. Chem. Rev. 3 (1996) 33.Google Scholar
  7. 7.
    K.A. Bethke, M.C. Kung, B. Yang, M. Shah, D. Alt, C. Li and H.H. Kung, Catal. Today 26 (1995) 169.Google Scholar
  8. 8.
    H.H. Kung and M.C. Kung, Catal. Today 30 (1996) 5.Google Scholar
  9. 9.
    M.C. Kung, P.W. Park, D.-W. Kim and H.H. Kung, J. Catal. 181 (1999) 1.Google Scholar
  10. 10.
    K. Hadjiianov, V. Bushev, M. Kantcheva and D. Klissurski Langmuir 10 (1994) 464.Google Scholar
  11. 11.
    A. Yezerets, Y. Zheng, P.W. Park, M.C. Kung and H.H. Kung, Stud. Surf. Sci. Catal. 130 (2000) 629.Google Scholar
  12. 12.
    R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B 39 (2002) 283.Google Scholar
  13. 13.
    H. Hamada, Y. Kintaichi, T. Yoshinari, M. Tabata, M. Sasaki and T. Ito, Catal. Today 17 (1993) 111.Google Scholar
  14. 14.
    W. Rachmady and M.A. Vannice, J. Catal. 207 (2002) 317.Google Scholar
  15. 15.
    H. Idriss, K.S. Kim and M.A. Vannice, J. Catal. 139 (1993) 119.Google Scholar
  16. 16.
    V.A. Sadykov, V.V. Lunin, V.A. Matyshak, E.A. Paukshits, A.Ya. Rozovskii, N.N. Bulgakov and J.R.H. Ross, Kinet. Catal. 44 (2003) 379.Google Scholar
  17. 17.
    H.-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, Catal. Today 54 (1999) 483.Google Scholar
  18. 18.
    N.W. Cant and I.O.Y. Liu, Catal. Today 63 (2000) 133.Google Scholar
  19. 19.
    M. Haneda, N. Bion, M. Daturi, J. Saussey, J.-C. Lavalley, D. Duprez and H. Hamada, J. Catal. 206 (2002) 114.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Anguelina P. Kozlova
    • 1
  • Hiu-Ying Law
    • 1
  • Mayfair C. Kung
    • 1
  • Harold H. Kung
    • 1
  1. 1.Department of Chemical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations