Catalysis Letters

, Volume 95, Issue 1–2, pp 13–17 | Cite as

Improved Performance of Nano-Size H-BEA Zeolite Catalysts for the Friedel–Crafts Acetylation of Anisole by Acetic Anhydride

  • Eric G. Derouane
  • Iver Schmidt
  • Hervé Lachas
  • Claus J.H. Christensen
Article

Abstract

Nano-size zeolite H-BEA (n-H-BEA) prepared by “confined space synthesis” (CSS) within the pores of a carbon black matrix shows improved activity without loss in para-selectivity for the Friedel–Crafts acetylation of anisole by acetic anhydride. The turnover frequency (TOF) of n-H-BEA exceeds that of a conventional H-BEA catalyst of similar aluminum and thus acid site content by a factor of about three at intermediate conversion. The latter observation is attributed to enhanced access and better utilization of the whole zeolite intracrystalline volume by the reactants as well as to the easier desorption of the acetylated product, p-methoxyacetophenone.

zeolite H-BEA particle size acid catalysis Friedel–Crafts acetylation anisole nanotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Olah, in: Friedel–Crafts Related Reactions, Vol. 1–4 (Wiley-Interscience, New York, 1963–1964).Google Scholar
  2. 2.
    G.A. Olah, in: Friedel–Crafts Related Reactions (Wiley-Interscience, New York, 1973).Google Scholar
  3. 3.
    P. Métivier, in: Fine Chemicals through Heterogeneous Catalysis, eds. R.A. Sheldon and H. van Bekkum (Wiley–VCH, Weinheim, 2001) p. 161and references cited therein.Google Scholar
  4. 4.
    P. Marion, R. Jacquot, S. Ratton and M. Guisnet, in: Zeolites for Cleaner Technologies, eds. M. Guisnet and J.P. Gilson (Imperial College Press, 2002) p. 281.Google Scholar
  5. 5.
    E.G. Derouane, C.J. Dillon, D. Bethell and S.B. Abd Hamid, J. Catal. 187 (1999) 209.Google Scholar
  6. 6.
    E.G. Derouane, G. Crehan, C.J. Dillon, D. Bethell, H. He and S.B. Abd Hamid, J. Catal. 194 (2000) 410.Google Scholar
  7. 7.
    F. Jayat, M.J. Sabater Picot and M. Guisnet, Catal. Lett. 41 (1996) 181.Google Scholar
  8. 8.
    M. Guisnet and G. Perot, in: Fine Chemicals through Heterogeneous Catalysis, eds. R.A. Sheldon and H. van Bekkum (Wiley–VCH, Weinheim, 2001) p. 161and references cited therein.Google Scholar
  9. 9.
    C.J. Dillon, PhD Thesis, University of Liverpool, 2000.Google Scholar
  10. 10.
    P. Andy, J. Garcia-Martinez, G. Lee, H. Gonzalez, C.W. Jones and M.E. Davis, J. Catal. 192 (2000) 215.Google Scholar
  11. 11.
    P. Botella, A. Corma and G. Sastre, J. Catal. 197 (2001) 81.Google Scholar
  12. 12.
    P. Moreau, A. Finiels, P. Meric and F. Fajula, Catal. Lett. 85 (2003) 199.Google Scholar
  13. 13.
    C. Madsen and C.J.H. Jacobsen, Chem. Commun. (1999) 673.Google Scholar
  14. 14.
    A.J. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster and K.P. de Jong, Micropor. Mesopor. Mater. 65 (2003) 59.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Eric G. Derouane
    • 1
  • Iver Schmidt
    • 2
  • Hervé Lachas
    • 1
  • Claus J.H. Christensen
    • 1
  1. 1.Department of Chemistry, Leverhulme Centre for Innovative CatalysisUniversity of LiverpoolLiverpoolUK
  2. 2.Haldor Topsøe A/S Research LaboratoriesLyngbyDenmark

Personalised recommendations