Advertisement

Catalysis Letters

, Volume 93, Issue 1–2, pp 93–100 | Cite as

Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature

  • S. Kandoi
  • A.A. Gokhale
  • L.C. Grabow
  • J.A. Dumesic
  • M. Mavrikakis
Article

Abstract

Self-consistent, periodic density functional theory (DFT) calculations and micro-kinetic modeling are used to compare selectivity for the preferential oxidation of CO (PROX) with respect to H2 based on studies of elementary reaction steps on the (111) facet of Au, Cu and Pt. The first step of H oxidation (OH formation) has a higher activation barrier than the second step (H2O formation) on all three metal surfaces, indicating that OH formation competes with CO oxidation for the removal of trace amounts of CO from a typical reformate gas. The activation energy barrier for CO oxidation is found to be 0.18eV on Au(111), 0.82eV on Cu(111) and 0.96eV on Pt(111), whereas the barrier for OH formation is 0.90, 1.28 and 0.83eV respectively. A micro-kinetic model based on the DFT results shows that trends in the selectivity of these metals at different temperatures is due to (i) differences in the rate constants of the competitive CO and H oxidation reactions, and (ii) differences in the CO and H surface coverages. Our results explain why Au and Cu are more selective PROX catalysts compared to Pt at low temperatures. At higher temperatures, Pt and Cu lose some of their selectivity to CO oxidation, whereas the selectivity on Au decreases substantially primarily because of the significantly weaker CO adsorption.

density functional theory fuel cells catalyst gold platinum copper preferential oxidation CO oxidation hydrogen oxidation selectivity micro-kinetic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.V. Choudhary and D.W. Goodman, Catal. Today 77 (2002) 65.Google Scholar
  2. [2]
    R.R. Davda and J.A. Dumesic, Angew. Chem., Int. Ed. 42 (2003) 4068.Google Scholar
  3. [3]
    O. Korotkikh and R. Farrauto, Catal. Today 62 (2000) 249.Google Scholar
  4. [4]
    H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki and M. Watanabe, Appl. Catal. A: Gen. 159 (1997) 159.Google Scholar
  5. [5]
    M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Catal. 171 (1997) 93.Google Scholar
  6. [6]
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon, J. Catal. 144 (1993) 175.Google Scholar
  7. [7]
    B. Hammer and J.K. Nørskov, Nature 376 (1995) 238.Google Scholar
  8. [8]
    M. Mavrikakis, P. Stoltze and J.K. Nørskov, Catal. Lett. 64 (2000) 101.Google Scholar
  9. [9]
    Z.P. Liu, P. Hu and A. Alavi, J. Am. Chem. Soc. 124 (2002) 14770.Google Scholar
  10. [10]
    N. Lopez and J.K. Nørskov, J. Am. Chem. Soc. 124 (2002) 11262.Google Scholar
  11. [11]
    V.A. Bondzie, S.C. Parker and C.T. Campbell, Catal. Lett. 63 (1999) 143.Google Scholar
  12. [12]
    C.K. Costello, M.C. Kung, H.S. Oh, Y. Wang and H.H. Kung, Appl. Catal. A: Gen. 232 (2002) 159.Google Scholar
  13. [13]
    H.H. Kung, M.C. Kung and C.K. Costello, J. Catal. 216 (2003) 425.Google Scholar
  14. [14]
    L.M. Molina and B. Hammer, Phys. Rev. Lett. 90 (2003).Google Scholar
  15. [15]
    M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.Google Scholar
  16. [16]
    F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta, J. Phys. Chem.-Us 100 (1996) 3625.Google Scholar
  17. [17]
    A. Cho, Science 299 (2003) 1684.Google Scholar
  18. [18]
    D. Cameron, R. Holliday and D. Thompson, J. Power Sources 118 (2003) 298.Google Scholar
  19. [19]
    T.V. Choudhary and D.W. Goodman, Top. Catal. 21 (2002) 25.Google Scholar
  20. [20]
    R.M.T. Sanchez, A. Ueda, K. Tanaka and M. Haruta, J. Catal. 168 (1997) 125.Google Scholar
  21. [21]
    R.J.H. Griesel and B.E. Nieuwenhuys, J. Catal. 199 (2001) 48.Google Scholar
  22. [22]
    M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Catal. 182 (1999) 430.Google Scholar
  23. [23]
    G.K. Bethke and H.H. Kung, Appl. Catal. A: Gen. 194 (2000) 43.Google Scholar
  24. [24]
    T.V. Choudhary, C. Sivadinarayana, C. Chusuei, A.K. Datye, J.P. FacklerJr and D.W. Goodman, J. Catal. 207 (2002) 247.Google Scholar
  25. [25]
    M.M. Schubert, V. Plzak, J. Garche and R.J. Behm, Catal. Lett. 76 (2001) 143.Google Scholar
  26. [26]
    G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar and H.K. Matralis, Catal. Today 75 (2002) 157.Google Scholar
  27. [27]
    G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista and S. Hocevar, Catal. Lett. 73 (2001) 33.Google Scholar
  28. [28]
    D.H. Kim and J.E. Chua, Catal. Lett. 86 (2003) 107.Google Scholar
  29. [29]
    M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Huttner, S. Hackenberg, H.A. Gasteiger and R.J. Behm, Phys. Chem. Chem. Phys. 3 (2001) 1123.Google Scholar
  30. [30]
    J. Zhang, Y. Wang, B. Chen, C. Li, D. Wu and X. Wang, Energy Conv. Mgmt. 44 (2003) 1805.Google Scholar
  31. [31]
    P.V. Snytnikov, V.A. Sobyanin, V.D. Belyaev, P.G. Tsyrulnikov, N.B. Shitova and D.A. Shlyapin, Appl. Catal. A: Gen. 239 (2003) 149.Google Scholar
  32. [32]
    H. Tanaka, S. Ito, S. Kameoka, K. Tomishige and K. Kunimori, Catal. Commun. 4 (2003) 1.Google Scholar
  33. [33]
    J. Greeley, J.K. Nørskov and M. Mavrikakis, Ann. Rev. Phys. Chem. 53 (2002) 319.Google Scholar
  34. [34]
    B. Hammer, L.B. Hansen and J.K. Nørskov, Phys. Rev. B 59 (1999) 7413.Google Scholar
  35. [35]
    J. Neugebauer and M. Scheffler, Phys. Rev. B 46 (1992) 16067.Google Scholar
  36. [36]
    A. Michaelides and P. Hu, J. Am. Chem. Soc. 122 (2000) 9866.Google Scholar
  37. [37]
    A. Michaelides and P. Hu, J. Am. Chem. Soc. 123 (2001) 4235.Google Scholar
  38. [38]
    Y. Xu and M. Mavrikakis, Surf. Sci. 494 (2001) 131.Google Scholar
  39. [39]
    Y. Xu and M. Mavrikakis, J. Phys. Chem. B 107 (2003) 9298.Google Scholar
  40. [40]
    J. Greeley and M. Mavrikakis, J. Am. Chem. Soc. 124 (2002) 7193.Google Scholar
  41. [41]
    D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.Google Scholar
  42. [42]
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais, Phys. Rev. B 46 (1992) 6671.Google Scholar
  43. [43]
    J.A. White and D.M. Bird, Phys. Rev. B 50 (1994) 4954.Google Scholar
  44. [44]
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.Google Scholar
  45. [45]
    CRC Handbook of Chemistry and Physics, 76thedn., ed. D.R. Lide (CRC Press, New York, 1996).Google Scholar
  46. [46]
    J. Greeley and M. Mavrikakis, J. Catal. 208 (2002) 291.Google Scholar
  47. [57]
    J. Greeley, A.A. Gokhale, J. Kreuser, J.A. Dumesic, H. Topsoe, N.Y. Topsoe and M. Mavrikakis, J. Catal. 213 (2003) 63.Google Scholar
  48. [48]
    Y. Xu and M. Mavrikakis, Surf. Sci. 538 (2003) 219.Google Scholar
  49. [49]
    G. Henkelman, B.P. Uberuaga and H. Jonsson, J. Chem. Phys. 113 (2000) 9901.Google Scholar
  50. [50]
    G. Henkelman and H. Jonsson, J. Chem. Phys. 113 (2000) 9978.Google Scholar
  51. [51]
    J. Greeley and M. Mavrikakis, Surf. Sci. 540 (2003) 215.Google Scholar
  52. [53]
    P.J. Linstrom and W.G. Mallard, eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 2003) (http://webbook.nist.gov).Google Scholar
  53. [54]
    W.E. Stewart, M. Caracotsios and J.P. Sorensen, AIChE J. 38 (1992) 641.Google Scholar
  54. [55]
    A. Michaelides, V.A. Ranea, P.L. de Andres and D.A. King, Phys. Rev. Lett. 90 (2003) 216102.Google Scholar
  55. [56]
    A. Eichler, Surf. Sci. 498 (2002) 314.Google Scholar
  56. [57]
    C.J. Zhang, R.J. Baxter, P. Hu, A. Alavi and M.H. Lee, J. Chem. Phys. 115 (2001) 5272.Google Scholar
  57. [58]
    M. Mavrikakis, M. Bäumer, H.J. Freund and J.K. Nørskov, Catal. Lett. 81 (2002) 153.Google Scholar
  58. [59]
    S. Dahl, A. Logadottir, R.C. Egeberg, J.H. Larsen, I. Chorkendorff, E. Tornqvist and J.K. Nørskov, Phys. Rev. Lett. 83 (1999) 1814.Google Scholar
  59. [60]
    J.K. Nørskov et al., J. Catal. 209 (2002) 275.Google Scholar
  60. [61]
    M.M. Schubert, M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Power Sources 84 (1999) 175.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S. Kandoi
    • 1
  • A.A. Gokhale
    • 1
  • L.C. Grabow
    • 1
  • J.A. Dumesic
    • 1
  • M. Mavrikakis
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations