Catalysis Letters

, Volume 91, Issue 3–4, pp 193–198 | Cite as

Photocatalytic Water Splitting over La2Ti2O7 Synthesized by the Polymerizable Complex Method

  • Hyun Gyu Kim
  • Dong Won Hwang
  • Sang Won Bae
  • Jong Hyeon Jung
  • Jae Sung Lee
Article

Abstract

Highly donor-doped (110) layered perovskite materials, La2Ti2O7, with high surface areas were synthesized by the polymerizable complex (PC) method. Relative to La2Ti2O7 prepared by the solid state reaction (SSR) method, PC catalysts showed higher surface areas, crystallization at lower temperatures, higher phase purity, more uniform morphology and better-distributed nickel on the outer surface of La2Ti2O7. All these factors led to higher photocatalytic activity for overall water splitting under UV irradiation. The quantum yield of the reaction over La2Ti2O7 prepared by the PC method was as high as 27%, which was about twofold greater than that over La2Ti2O7 prepared by the SSR method.

La2Ti2O7 polymerizable complex method photocatalytic activity water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. F. Wagner and A. G. Somorjai, J. Am. Chem. Soc. 102 (1980) 5494.Google Scholar
  2. [2]
    S. M. Wrighton, B. A. Ellis and D. S. Ginley, J. Am. Chem. Soc. 98 (1976) 2774.Google Scholar
  3. [3]
    K. Domen, A. N. Kudo and A. Shinozaki, Chem. Commun. (1986) 356.Google Scholar
  4. [4]
    Y. Inoue, Y. Asai and K. Sato, J. Chem. Soc., Faraday Trans. 90 (1994) 797.Google Scholar
  5. [5]
    A. Kudo and H. Kato, Chem. Lett. (1997) 867.Google Scholar
  6. [6]
    T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. Kondo and K. Domen, J. Photochem. Photobiol. A: Chem. 45 (1997) 106.Google Scholar
  7. [7]
    K. Domen, M. Hara, J. N. Kondo, T. Takata, A. Kudo, H. Kobayashi and Y. Inoue, Korean J. Chem. Eng. 18(6) (2001) 862.Google Scholar
  8. [8]
    M. Kakihana and M. Yoshimura, Bull Chem. Soc. Jpn. 72 (1999) 1427.Google Scholar
  9. [9]
    S. Ikeda, M. Hara, J. N. Kondo and K. Domen, Chem. Mater. 10 (1998) 72.Google Scholar
  10. [10]
    S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Tkahashi, T. Okubo and M. Kakihana, J. Mater. Res. 13 (1998) 852.Google Scholar
  11. [11]
    H. G. Kim, D. W. Hwang, J. Kim, Y. G. Kim and J. S. Lee, Chem. Commun. (1999) 1077.Google Scholar
  12. [12]
    D. W. Hwang, H. G. Kim, J. Kim, Y. G. Kim and J. S. Lee, J. Catal. 103 (2000) 40.Google Scholar
  13. [13]
    J. Kim, D. W. Hwang, S. W. Bae, Y. G. Kim and J. S. Lee, Korean J. Chem. Eng. 18(6) (2001) 941.Google Scholar
  14. [14]
    J. Kim, D. W. Hwang, H. G. Kim, S. W. Bae, Y. G. Kim, S. M. Ji and J. S. Lee, Chem. Commun. (2002) 2488.Google Scholar
  15. [15]
    J. F. Rabek, Experimental Methods in Photochemistry and Photophysics, Part 2 (Wiley, New York, 1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Hyun Gyu Kim
    • 1
  • Dong Won Hwang
    • 1
  • Sang Won Bae
    • 1
  • Jong Hyeon Jung
    • 2
  • Jae Sung Lee
    • 1
  1. 1.Department of Chemical Engineering/Institute of Environmental and Energy TechnologyPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Division of Biotechnology and Health EngineeringSorabol CollegeKorea

Personalised recommendations