Cardiovascular Drugs and Therapy

, Volume 17, Issue 5–6, pp 397–414 | Cite as

Cardiovascular Drugs and Serum Uric Acid

  • Ariel J. Reyes


Uric acid (UA) is the final product of purine catabolism in man, and it is excreted mainly by the kidneys when renal function is not impaired. Consequently, serum (S) UA increases as a function of purine intake, and it varies inversely to uricosuria. The latter variable diminishes in response to low-sodium intakes and vice versa. Insofar as the diet is not usually controlled in studies in which the response of SUA to drugs is evaluated, most reports are to be considered cautiously. Common diuretics elevate SUA in healthy subjects, hypertensives and patients with heart failure, apparently by elevating net UA reabsorption in the nephronal proximal tubule. This drug action, which becomes noticeable shortly after the institution of treatment and remains throughout it, starts at low doses (e.g., 12.5 mg hydrochlorothiazide or 1.25 mg bendrofluazide once daily in subjects with uncomplicated hypertension) and increases in dose-dependent fashion. Beta-blockers tend to elevate SUA. The angiotensin-converting enzyme (ACE) inhibitors captopril, enalapril and ramipril have been found to increase uricosuria mildly, likely by lowering the net reabsorption of UA in the proximal tubule. These three drugs and lisinopril can blunt the rise in SUA provoked by diuretics in hypertensives if used at sufficiently high doses relative to the dose of the diuretic. The angiotensin II antagonist losartan augments uricosuria mildly and thereby decreases SUA. The cardiovascular implications of the response of SUA to drugs remain speculative. Uric acid can scavenge various reactive oxygen species and thus reduce oxidative stress, which seems to contribute to the development and/or progress of various cardiovascular conditions, including hypertension, atherosclerosis and heart failure. Consequently, it may be theorised that the elevations in SUA induced by diuretics might contribute to the established favourable action of these agents on cardiovascular prognosis. Conversely, diuretic-induced increases in SUA are to be considered detrimental according to an old hypothesis that maintains that SUA is a cardiovascular risk factor; this construct is largely based upon the results of selected epidemiological undertakings. The cardiovascular implications of the effects of drugs on SUA, if any, should be elucidated through purposive research.

acetylsalicylic acid allopurinol angiotensin-converting enzyme inhibitors beta-blockers coronary heart disease diuretics heart failure hypertension losartan oxidative stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrison R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radic Biol Med 2002; 33: 774-797.Google Scholar
  2. 2.
    Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: From urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 2002; 9: 161-175.Google Scholar
  3. 3.
    Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 2000; 87: 241-247.Google Scholar
  4. 4.
    Lucchesi BR. Free radicals and tissue injury. Dial Cardiovasc Med 1998; 3: 3-22.Google Scholar
  5. 5.
    Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of the endothelium-derived vascular relaxing factor. Nature 1986; 320: 454-456.Google Scholar
  6. 6.
    Santos CX, Anjos EI, Augusto O. Uric acid oxidation by peroxynitrite: Multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 1999; 372: 285-294.Google Scholar
  7. 7.
    Veselà A, Wilhelm J. The role of carbon dioxide in free radical reactions of the organism. Physiol Res 2002; 51: 335-339.Google Scholar
  8. 8.
    Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 2003; 140/141: 105-112.Google Scholar
  9. 9.
    Cooper D, Stokes KY, Tailor A, Granger DN. Oxidative stress promotes blood cell endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2002; 2: 165-180.Google Scholar
  10. 10.
    Virag L, Szabo E, Gergely P, Szabo C. Peroxynitrite-induced cytotoxicity: Mechanism and opportunities for intervention. Toxicol Lett 2003; 140/141: 113-124.Google Scholar
  11. 11.
    Wink DA, Miranda KM, Espey MG, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 2001; 3: 203-213.Google Scholar
  12. 12.
    Peixoto MR, Monego ET, Jardim PC, et al. Diet and medication in the treatment of hyperuricemia in hypertensive patients. Arq Bras Cardiol 2001; 76: 463-72.Google Scholar
  13. 13.
    Landmesser U, Spiekermann S, Dikalov S, et al.Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: Role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002; 106: 3073-3078.Google Scholar
  14. 14.
    Regoli F, Winston GW. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 1999; 156: 96-105.Google Scholar
  15. 15.
    Teng RJ, Ye YZ, Parks DA, Beckman JS. Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic Biol Med 2002; 33: 1243-1249.Google Scholar
  16. 16.
    Whiteman M, Ketsawatsakul U, Halliwell B. Areassessment of the peroxynitrite scavenging activity of uric acid. Ann N Y Acad Sci 2002; 962: 242-259.Google Scholar
  17. 17.
    Kirsch M, Korth HG, Sustmann R, de Groot H. The pathobiochemistry of nitrogen dioxide. Biol Chem 2002; 383: 389-399.Google Scholar
  18. 18.
    Squadrito GL, Cueto R, Splenser AE, et al. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 2000; 376: 333-337.Google Scholar
  19. 19.
    Augusto O, Bonini MG, Amanso AM, Linares E, Santos CC, De Menezes SL. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic Biol Med 2001; 32: 841-859.Google Scholar
  20. 20.
    Hink HU, Santanam N, Dikalov S, et al. Peroxidase properties of extracellular superoxide dismutase: Role of uric acid in modulating in vivo activity. ArteriosclerThrombVasc Biol 2002; 22: 1402-1408.Google Scholar
  21. 21.
    Telo JP. Radicals derived from uric acid and its methyl derivatives in aqueous solution: An EPR spectroscopy and theoretical study. Org Biomol Chem 2003; 1: 588-592.Google Scholar
  22. 22.
    Skinner KA, White CR, Patel R, et al. Nitrosation of uric acid by peroxynitrite. Formation of a vasoactive nitric oxide donor. J Biol Chem 1998; 273: 24491-24497.Google Scholar
  23. 23.
    Huang CT, Chen ML, Huang LL, Mao IF. Uric acid and urea in human sweat. Chin J Physiol 2002; 45: 109-115.Google Scholar
  24. 24.
    Rafey MA, Lipkowitz MS, Leal-Pinto E, Abramson RG. Uric acid transport. Curr Opin Nephrol Hypertens 2003; 12: 511-516.Google Scholar
  25. 25.
    Steele TN. Importance and pathogenesis of diuretic-induced hyperuricemia. In: Puschett JB, Greenberg A, eds. Diuretics IV: Chemistry, Pharmacology and Clinical Applications. Amsterdam: Excerpta Medica, 1993: 231-238.Google Scholar
  26. 26.
    Weinman EJ, Eknoyan G, Suki N. The influence of the extracellular fluid volume on the tubular reabsorption of uric acid. J Clin Invest 1975; 55: 283-291.Google Scholar
  27. 27.
    Egan BM, Weder AB, Petrin J, Hoffman RG. Neurohumoral and metabolic effects of short-term dietary NaCl restriction in men. Relationship to salt-sensitivity status. Am J Hypertens 1991; 4: 416-421.Google Scholar
  28. 28.
    Del Rio A, Rodriguez-Villamil JL. Metabolic effects of strict salt restriction in essential hypertensive patients. J Intern Med 1993; 233: 409-414.Google Scholar
  29. 29.
    de la Sierra A, Lluch MM, Coca A, et al. Fluid, ionic and hormonal changes induced by high salt intake in salt-sensitive and salt-resistant hypertensive patients. Clin Sci (Lond) 1996; 91: 155-161.Google Scholar
  30. 30.
    Burnier M, Weber B, Brunner HR. The advantages of angiotensin II antagonism. J Hypertens 1994; 12(Suppl 2): S7-S15.Google Scholar
  31. 31.
    Moriwaki Y, Yamamoto T, Tsutsumi Z, Takahashi S, Hada T. Effects of angiotensin II infusion on renal excretion of purine bases and oxypurinol. Metabolism 2002; 51: 893-895.Google Scholar
  32. 32.
    Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Hada T. Effect of norepinephrine on the urinary excretion of purine bases and oxypurinol. Metabolism 2001; 50: 1230-1233.Google Scholar
  33. 33.
    Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M. Uric acid metabolism and tubular sodium handling. Results from a population-based study. JAMA 1993; 270: 354-359.Google Scholar
  34. 34.
    Quinones Galvan A, Natali A, Baldi S, et al. Effect of insulin on uric acid excretion in humans. AmJ Physiol 1995; 268: E1-E5.Google Scholar
  35. 35.
    Muscelli E, Natali A, Bianchi S, et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens 1996; 9: 746-752.Google Scholar
  36. 36.
    Quinones-Galvan A, Ferrannini E. Renal effects of insulin in man. J Nephrol 1997; 10: 188-191.Google Scholar
  37. 37.
    Reaven GM. The kidney: An unwilling accomplice in syndrome X. Am J Kidney Dis 1997; 30: 928-931.Google Scholar
  38. 38.
    Tsunoda S, Kamide K, Minami J, Kawano Y. Decreases in serum uric acid by amelioration of insulin resistance in overweight hypertensive patients: Effect of a low-energy diet and an insulin-sensitizing agent. Am J Hypertens 2002; 15: 697-701.Google Scholar
  39. 39.
    Johns EJ. Role of angiotensin II and the sympathetic system in the control of renal function. J Hypertens 1989; 7: 695-701.Google Scholar
  40. 40.
    Lang CC, Rahman AR, Balfour DK, Struthers AD. Prazosin blunts the antinatriuretic effect of circulating angiotensin II in man. J Hypertens 1992; 10: 1387-1395.Google Scholar
  41. 41.
    Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium inhumanhypertension. Short review of the evidence. Hypertension 2003; 41: 1000-1005.Google Scholar
  42. 42.
    Kirschbaum B. Renal regulation of plasma total antioxidant capacity. Med Hypotheses 2001; 56: 625-629.Google Scholar
  43. 43.
    Cannon PJ, Stason WB, DeMartini FE, Sommers SC, Laragh JH. Hyperuricemia in primary and renal hypertension. N Engl J Med 1966; 275: 457-464.Google Scholar
  44. 44.
    Tykarski A. Evaluation of renal handling of uric acid in essential hypertension: Hyperuricemia related to decreased urate secretion. Nephron 1991; 59: 364-368.Google Scholar
  45. 45.
    Osaki S, Kinugawa T, Endo A, et al. Impairment of urate excretion is an important mechanism for hyperuricemia in patients with heart failure. J Card Fail 1999; 5(Suppl 2): 60.Google Scholar
  46. 46.
    Orynchak M, Neiko EM, Seredyuk VN. Insulin resistance and chronic heart failure. J Hypertens 2001; 19(Suppl 2): S284.Google Scholar
  47. 47.
    Teodosiev L. Excretion of uric acid in cardiac decompensation. Vutr Boles 1979; 18: 218-224. [Article in Bulgarian; the author read the abstract in English publicised by PubMed.]Google Scholar
  48. 48.
    Fotherby MD, Potter JF. Metabolic and orthostatic blood pressure responses to a low-sodium diet in elderly hypertensives. J Hum Hypertens 1997; 11: 361-366.Google Scholar
  49. 49.
    Ferreira MI, Alcocer L, Leary WP, Reyes AJ. Patient compliance with antihypertensive therapy with diuretics: Critical reappraisal. Prog Pharmacol Clin Pharmacol 1992; 9: 497-514.Google Scholar
  50. 50.
    Iwaki K, Yonetani Y. Decreased renal excretion of uric acid following diuretic administration in rats. Jpn J Pharmacol 1984; 34: 389-396.Google Scholar
  51. 51.
    Iwaki K, Ishii M, Yonetani Y. Hypotensive and uric acidretaining effects of trichlormethiazide under dietary sodium restriction in spontaneously hypertensive rats. Jpn J Pharmacol 1984; 36: 301-309.Google Scholar
  52. 52.
    Kau ST. Diuretics: What we have and what we need. Prog Pharmacol 1988; 6(3): 1-63.Google Scholar
  53. 53.
    Reyes AJ, Leary WP, Espinas RD. Serum magnesium concentration tends to increase slightly in response to dosages of the loop diuretic torasemide that are used in heart failure. Eur Heart J 2002; 23 (Abstract Suppl): 711.Google Scholar
  54. 54.
    Roberts C, Homeida M, Roberts F. Effects of piretanide, bumetanide and furosemide on electrolyte and urate excretion in normal subjects. BrJ Clin Pharmacol 1978; 6: 129-133.Google Scholar
  55. 55.
    Araoye MA, Chang MY, Khatri IM, Freis ED. Furosemide compared with hydrochlorothiazide. Long-term treatment of hypertension. JAMA 1978; 240: 1863-1866.Google Scholar
  56. 56.
    Ward A, Heel RC. Bumetanide. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 1984; 28: 426-464.Google Scholar
  57. 57.
    Clissold SP, Brogden RN. Piretanide. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1985; 29: 489-530.Google Scholar
  58. 58.
    Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Hada T. Effect of furosemide on renal excretion of oxypurinol and purine bases. Metabolism 2001; 50: 241-245.Google Scholar
  59. 59.
    Leary WP, Reyes AJ, van der Byl K. Urinary excretory responses to the alpha-2 sympathetic agonist rilmenidine, to hydrochlorothiazide and to their combination in healthy subjects. In: Puschett JB, Greenberg A, eds. Diuretics IV: Chemistry, Pharmacology and Clinical Applications. Amsterdam: Excerpta Medica, 1993: 387-390.Google Scholar
  60. 60.
    Roberts CJ, Marshall AJ, Heaton S, Barritt DW. Comparison of natriuretic, uricosuric, and antihypertensive properties of tienilic acid, bendrofluazide, and spironolactone. Br Med J 1979; 1: 224-226.Google Scholar
  61. 61.
    Veterans Administration Cooperative Study Group on Antihypertensive Agents. Comparison of propranolol and hydrochlorothiazide for the initial treatment of hypertension. JAMA 1982; 248: 2004-2011.Google Scholar
  62. 62.
    Hulley SB, Furberg CD, Gurland B, et al. Systolic Hypertension in the Elderly Program (SHEP): Antihypertensive efficacy of chlorthalidone. Am J Cardiol 1985; 56: 913-920.Google Scholar
  63. 63.
    Ekbom T, DalhÖf B, Hansson L, Lindholm LH, Scherstén B, Wester PO. Antihypertensive efficacy and side effects of three beta-blockers and a diuretic in elderly hypertensives: A report from the STOP-Hypertension study. J Hypertens 1992; 10: 1525-1530.Google Scholar
  64. 64.
    Vidt DG. Mechanism of action, pharmacokinetics, adverse effects and therapeutic uses of amiloride, a new potassiumsparing diuretic. Pharmacotherapy 1981; 1: 179-187.Google Scholar
  65. 65.
    Jeunemaitre X, Charru A, Chatellier G, et al. Long-term metabolic effects of spironolactone and thiazides combined with potassium-sparing agents for treatment of essential hypertension. Am J Cardiol 1988; 62: 1072-1077.Google Scholar
  66. 66.
    Krum H, Nolly H, Workman D, et al. Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients. Hypertension 2002; 40: 117-123.Google Scholar
  67. 67.
    Inspra (eplerenone US approved prescribing information, October 2002) [10 screens]. Available from: URL: http: // on the 16th December, 2002.Google Scholar
  68. 68.
    Pedersen OL, Mikkelsen E. Serum potassium and uric acid changes during treatment with timolol alone and in combination with a diuretic. Clin Pharmacol Ther 1979; 26: 339-343.Google Scholar
  69. 69.
    Koskelainen J, Turpeinen T, Lehto H, Lammintausta R, Sarna S, Viikari J. Metabolic effects of hydrochlorothiazide and hydrochlorothiazide-amiloride and trichlormethiazidetriamterene combinations. Curr Ther Res Clin Exp 1985; 37: 554-565.Google Scholar
  70. 70.
    Kohvakka A, Salo H, Gordin A, Eisalo A. Antihypertensive and biochemical effects of different doses of hydrochlorothiazide alone and in combination with triamterene. Acta Med Scand 1986; 219: 381-386.Google Scholar
  71. 71.
    Andrejak M, Santoni JP, Carre A, et al. A double-blind comparison of perindopril and hydrochlorothiazide-amiloride in mild to moderate essential hypertension. Fundam Clin Pharmacol 19915: 185-192.Google Scholar
  72. 72.
    Leary WP, Reyes AJ, Wynne RD, van der Byl K. Renal excretory actions of furosemide, of hydrochlorothiazide and of the vasodilator flosequinan in healthy subjects. J Int Med Res 1990; 18: 120-141.Google Scholar
  73. 73.
    Reyes AJ, Leary WP, van der Byl K. Renal excretory responses to single and repeated administration of loop and of distal tubular diuretics at various doses in healthy man. Prog Pharmacol Clin Pharmacol 1992; 9: 219-262.Google Scholar
  74. 74.
    Reyes AJ, Leary WP. Renal excretory responses to single and repeated administration of diuretics in healthy subjects. Clinical connotations. Cardiovasc Drugs Ther 1993; 7: 29-44.Google Scholar
  75. 75.
    MacKay JH, Arcuri KE, Goldberg AI, Snapinn SM, Sweet CS. Losartan and low-dose hydrochlorothiazide in patients with essential hypertension. A double-blind, placebocontrolled trial of concomitant administration compared with individual components. Arch Intern Med 1996; 156: 278-285.Google Scholar
  76. 76.
    Kochar M, Guthrie R, Triscari J, Kassler-Taub K, Reeves RA. Matrix study of irbesartan with hydrochlorothiazide in mild-to-moderate hypertension. Am J Hypertens 1999; 12: 797-805.Google Scholar
  77. 77.
    Korduner Y, Käbin I, Hagbarth G. Low-dose chlorthalidone treatment in previously untreated hypertension. Curr Ther Res Clin Exp 1981; 29: 208-215.Google Scholar
  78. 78.
    Pollavini G, Comi D, Grillo C, et al. Multicentre randomized cross-over double-blind comparison between chlorthalidone and slow-release oxprenolol in mild-to-moderate hypertension. Curr Ther Res Clin Exp 1984; 35: 465-475.Google Scholar
  79. 79.
    Neaton JD, Grimm RH Jr, Prineas RJ, et al. Treatment of Mild Hypertension Study. Final results. JAMA 1993; 270: 713-724.Google Scholar
  80. 80.
    Leonetti G, Trimarco B, Collatina S, Tosetti A, on behalf of participating centers. An effective approach for treating patients with isolated systolic hypertension. Results of an Italian multicenter study with fosinopril. Am J Hypertens 1997; 10: 230S-235S.Google Scholar
  81. 81.
    Savage PJ, Pressel SL, Curb JD, et al. Influence of longterm, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: The Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med 1998; 158: 741-751.Google Scholar
  82. 82.
    Franse LV, Pahor M, Di Bari M, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens 2000; 18: 1149-1154.Google Scholar
  83. 83.
    Girvin B, Johnston GD. A randomized comparison of a conventional dose, a low dose and alternate-day dosing of bendrofluazide in hypertensive patients. J Hypertens 1998; 16: 1049-1054.Google Scholar
  84. 84.
    Hashida JG. A double-blind multicentre study of indapamide in the treatment of essential hypertension. Curr Med Res Opin 1977; 5(Suppl 1): 116-123.Google Scholar
  85. 85.
    Myers MG, Asmar R, Leenen FHH, Safar M. Fixed lowdose combination therapy in hypertension-A dose response study of perindopril and indapamide. J Hypertens 2000; 18: 307-315.Google Scholar
  86. 86.
    Carlsen JE, Kober L, Torp-Pedersen C, Johansen P. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects. Br Med J 1990; 300: 975-978.Google Scholar
  87. 87.
    Wiggam MI, Bell PM, Sheridan B, Walmsley A, Atkinson AB. Low dose bendrofluazide (1.25 mg) effectively lowers blood pressure over 24 h. Results of a randomized, doubleblind, placebo-controlled crossover study. Am J Hypertens 1999; 12: 528-531.Google Scholar
  88. 88.
    McDonald CJ, Hui SL, Tierney WM. Diuretic-induced laboratory abnormalities that predict ventricular ectopy. J Chron Dis 1986; 39: 127-135.Google Scholar
  89. 89.
    Reyes AJ. Diuretics in the therapy of hypertension. J Hum Hypertens 2002; 16(Suppl 1): S78-S83.Google Scholar
  90. 90.
    Scholze J for the East Germany Collaborative Trial Group, Breitstadt A, Cairns V, et al. Ramipril and hydrochlorothiazide combination therapy in hypertension: Aclinical trial of factorial design. J Hypertens 1993; 11(Suppl 2): S25-S33.Google Scholar
  91. 91.
    Takata Y, Yoshizumi T, Ito Y, et al. Comparison of withdrawing antihypertensive therapy between diuretics and angiotensin converting enzyme inhibitors in essential hypertensives. Am Heart J 1992; 124: 1574-1580.Google Scholar
  92. 92.
    Nishijima H, Yasuda H, Ito K, et al. Acute and chronic hemodynamic effects of the basic therapeutic regimen for congestive heart failure. Diuretics, low salt diet and bed rest. Jpn Heart J 1984; 25: 571-585.Google Scholar
  93. 93.
    Gonska BD, Kreuzer, H. Diuretische Monotherapie der Herzinsiffizienz. Vergleich von Piretanid und Hydrochlorothiazid-Triamteren. Dtsch Med Wochenschr 1985; 47: 1812-1816.Google Scholar
  94. 94.
    HaererW, Bauer U, Sultan N, et al. Acute and chronic effects of diuretic monotherapy with piretanide in congestive heart failure-A placebo-controlled trial. Cardiovasc Drugs Ther 1990; 4: 515-522.Google Scholar
  95. 95.
    Gillies A, Morgan T, Myers J. Comparison of piretanide and hydrochlorothiazide in the treatment of cardiac failure. Med J Aust 1980; 1: 170-172.Google Scholar
  96. 96.
    Dixon DW, Barwold-Gohlke C, Gunnar RM. Comparative efficacy and safety of bumetamide and furosemide in longterm treatment of edema due to congestive heart failure. J Clin Pharmacol 1981; 21: 680-687.Google Scholar
  97. 97.
    Dalla Volta S, Sconamiglio R, Sorbio MD, Fasoli G, Maragno I. Effect of muzolimine in aortic insufficiency with different levels of left ventricular function. Z Kardiol 1984; 74(Suppl 2): 13-18.Google Scholar
  98. 98.
    DÜsing R, Piesche L. Second line therapy of congestive heart failure with torasemide. Prog Pharmacol Clin Pharmacol 1990; 8(1): 104-120.Google Scholar
  99. 99.
    Gerlag PGG, van Meijel JM. High-dose furosemide in the treatment of refractory congestive heart failure. Arch Intern Med 1988; 149: 286-291.Google Scholar
  100. 100.
    Dormans TPJ, Gerlag PGG. Combination of high-dose furosemide and hydrochlorothiazide in the treatment of refractory congestive heart failure. In: Puschett JB, Greenberg A, eds. Diuretics IV: Chemistry, Pharmacology and Clinical Applications. Amsterdam: Excerpta Medica, 1993: 45-48.Google Scholar
  101. 101.
    Paterna S, Di Pasquale P, Parrinello G. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as a bolus, in refractory congestive heart failure. Eur J Heart Fail 2000; 2: 305-313.Google Scholar
  102. 102.
    Licata G, Di Pasquale P, Parrinello G. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: Long-term effects. Am Heart J 2003; 145: 459-466.Google Scholar
  103. 103.
    Gillies AHB, Morgan TO. A double-blind comparison of the effects of hydrochlorothiazide and tienilic acid (a diuretic with uricosuric properties) in hypertension. Br J Clin Pharmacol 1978; 6: 357-362.Google Scholar
  104. 104.
    Frohlich ED. Ticrynafen: A new thiazide-like but uricosuric antihypertensive diuretic. N Engl J Med 1979; 301: 1378-1382.Google Scholar
  105. 105.
    Smith JW, Clements P. Renal function during therapy in patients with congestive cardiac failure. Ticrynafen vs. hydrochlorothiazide. Nephron 1979; 23(Suppl 1): 41-45.Google Scholar
  106. 106.
    Reyes AJ, Leary WP, van der Byl K. Lack of effect of cicletanine on uric acid. Am J Hypertens 2000; 13: 114A.Google Scholar
  107. 107.
    Tarrade T, Berthet P, Paillasseur JL, Bosquet D, Allard M. Efficacité antihypertensive et tolérance du cicletanine. Résultats obtenues en monothérapie sur une large population. Arch Mal Coeur Vaiss 1989; 82(Suppl IV): 91-97.Google Scholar
  108. 108.
    Passa P. Étude de la tolérance du cicletanine chez des patients hypertendues présentant des troubles métaboliques. Arch Mal Coeur Vaiss 1989; 82(Suppl IV): 135-138.Google Scholar
  109. 109.
    Reyes AJ, Leary WP, van der Byl K. Urinary excretory actions of various doses of cicletanine during once-daily administration. In: Puschett JB, Greenberg A, eds. Diuretics IV: Chemistry, Pharmacology and Clinical Applications. Amsterdam: Excerpta Medica, 1993: 383-386.Google Scholar
  110. 110.
    Fodor G, Guinot P. Review of three studies to determine the efficacy and tolerance of cicletanine in the short & long term treatment of essential hypertension. Drugs Exp Clin Res 1988; 14: 195-204.Google Scholar
  111. 111.
    Pozet N, Hadj-Aissa A, Lebeeuw M, Zech P. Acute renal effects of a new antihypertensive agent: BN 1270. Comparison with hydrochlorothiazide and furosemide. In: Puschett JB, Greenberg A, eds. Diuretics: Chemistry, Pharmacology, and Clinical Applications. NewYork: Elsevier Science, 1984: 394-396.Google Scholar
  112. 112.
    Reyes AJ, Leary WP. Clinicopharmacological reappraisal of the potency of diuretics. Cardiovasc Drugs Ther 1993; 7: 23-28.Google Scholar
  113. 113.
    Berglund G, Andersson O, Larsson O, Wilhelmsen L. Antihypertensive effect and side-effects on bendroflumethiazide and propranol. Acta Med Scand 1976; 199: 499-506.Google Scholar
  114. 114.
    Anonymous. Adverse reactions to bendrofluazide and propranolol for the treatment of mild hypertension. Report of Medical Research CouncilWorking Party on Mild to Moderate Hypertension. Lancet 1981; 2: 539-543.Google Scholar
  115. 115.
    Leren P, Eide I, Foss OP, et al. Antihypertensive drugs and blood lipids: The Oslo study. J Cardiovasc Pharmacol 1982; 4(Suppl 2): S222-S224.Google Scholar
  116. 116.
    Weber MA, Drayer JI, Kaufman CA. The combined alphaand beta-adrenergic blocker labetalol and propranolol in the treatment of high blood pressure: Similarities and differences. J Clin Pharmacol 1984; 24: 103-112.Google Scholar
  117. 117.
    Andersen GS. Atenolol versus bendroflumethiazide in middle-aged and elderly hypertensives. Acta Med Scand 1985; 218: 165-172.Google Scholar
  118. 118.
    Tuomilehto J, Nissinen A, Honkavaara M. Clinical evaluation of the antihypertensive effect of metoprolol in combination with hydrochlorothiazide and hydralazine in an unselected hypertensive population. Acta Cardiol 1980; 35: 289-301.Google Scholar
  119. 119.
    Aurell M, Bengtsson C, BjÖrck S. Enalapril versus metoprolol in primary hypertension-Effects on the glomerular filtration rate. Nephrol Dial Transplant 1997; 12: 2289-2294.Google Scholar
  120. 120.
    Leren P, Foss PO, Nordvik B, Fossbakk B. The effect of enalapril and timolol on blood lipids. A randomized multicenter hypertension study in general practice in Norway. Acta Med Scand 1988; 223: 321-326.Google Scholar
  121. 121.
    Bengtsson C. Comparison between alprenolol and chlorthalidone as antihypertensive agents. Acta Med Scand 1972; 191: 433-439.Google Scholar
  122. 122.
    Captopril Research Group of Japan (Chairman: Murakami, M). Clinical effects of low-dose captopril plus a thiazide diuretic on mild to moderate essential hypertension: A multicenter double-blind comparison with propranolol. J Cardiovasc Pharmacol 1985; 7(Suppl 1): S77-S81.Google Scholar
  123. 123.
    Pedersen OL, Jacobsen FK, Stengaard-Pedersen K. Renal uric acid handling is not affected by beta-adrenoceptor blockade in normotensive subjects. Eur J Clin Pharmacol 1985; 28: 223-224.Google Scholar
  124. 124.
    LearyWP, Reyes AJ, Maharaj B. Effects of atenolol, propranolol and tertatolol on urinary excretion of water and solutes in healthy subjects. Cur Ther Res Clin Exp 1988; 44: 630-640.Google Scholar
  125. 125.
    Malini PL, Strocchi E, Cervi V, Ambrosioni E. The metabolic effects of enalapril. Clin Exp Hypertens 1987; A9: 675-679.Google Scholar
  126. 126.
    Struyker-Boudier HAJ, Janssen BJA, Smits JFM. Adrenoceptors in the kidney: Localization and pharmacology. Clin Exp Hypertens 1987; A4(Suppl 1): 135-150.Google Scholar
  127. 127.
    Marwood JF, Stokes, GS. Serotonin (5HT) and its antagonists: Involvement in the cardiovascular system. Clin Exp Pharmacol Physiol 1984; 11: 439-456.Google Scholar
  128. 128.
    Zabludowski JR, Ball SG, Robertson JIS. Ketanserin and ?1-adrenergic antagonism in humans. J Cardiovasc Pharmacol 1985; 7(Suppl 7): S123-S125.Google Scholar
  129. 129.
    Frishman WH, Huberfeld S, Okin S, Wang YH, Kumar A, Shareef B. Serotonin and serotonin antagonism in cardiovascular and non-cardiovascular disease. J Clin Pharmacol 1995; 35: 541-572.Google Scholar
  130. 130.
    Fagard R, Fiocchi R, Lijnen P, et al. Hemodynamic and humoral responses to chronic ketanserin treatment in essential hypertension. Br Heart J 1984; 51: 149-156.Google Scholar
  131. 131.
    De Leeuw PW, Birkenhäger WH. Chronic effects of serotonin inhibition in hypertensive patients: Hemodynamic and humoral findings. J Cardiovasc Pharmacol 1985; 7(Suppl 7): S137-S139.Google Scholar
  132. 132.
    Waal-Manning HJ, Brown SA, Spears GF, Simpson FO. Clinical studies with ketanserin in hypertension. J Cardiovasc Pharmacol 1985; 7(Suppl 7): S154-S158.Google Scholar
  133. 133.
    Hannedouche T, Fillastre JP, Mimran A, et al. Ketanserin versus nifedipine in the treatment of essential hypertension in patients over 50 years old: An international multicenter study. J Cardiovasc Pharmacol 1987; 10(Suppl 3): S107-S112.Google Scholar
  134. 134.
    Reyes AJ, Leary WP, van der Byl K. Responses of urinary chloride, sodium, potassium and magnesium excretions to the addition of captopril to a combination of furosemide and amiloride. In: Puschett JB and Greenberg A, eds. Diuretics IV: Chemistry, Pharmacology and Clinical Applications. Amsterdam: Excerpta Medica, 1993: 595-598.Google Scholar
  135. 135.
    Leary WP, Reyes AJ, van der Byl K, Acosta-Barrios TN. Effects of captopril, hydrochlorothiazide and their combination on timed urinary excretions of water and electrolytes. J Cardiovasc Pharmacol 1985; 7(Suppl 1): S56-S62.Google Scholar
  136. 136.
    Lant AF, McNabb RW, Noormohamed FH. Kinetic and metabolic aspects of enalapril action. J Hypertens 1984; 2(Suppl 2): 37-42.Google Scholar
  137. 137.
    Labeeuw M, Pozet N, Zech PY, Hadj-Äissa A, Finaz de Villaine J, Laville M. Influence de l'administration aiguë de ramipril sur l'excrétion d'acide urique. Arch Mal Coeur Vaiss 1987; 80: 870-874.Google Scholar
  138. 138.
    Leary WP, Reyes AJ. Angiotensin I converting enzyme inhibitors and the renal excretion of urate. Cardiovasc Drugs Ther 1987; 1: 29-38.Google Scholar
  139. 139.
    Leary WP, Reyes AJ, Wynne RD, Espinas RD. Further insight into the uricosuric action of captopril. AmJ Hypertens 2002; 15: 45A.Google Scholar
  140. 140.
    Reyes AJ, Leary WP, van der Byl K, Santoni JP. Effects of the angiotensin-I converting enzyme inhibitor perindopril on timed urinary excretion of water and solutes in healthy subjects. Curr Ther Res Clin Exp 1988; 44: 619-629.Google Scholar
  141. 141.
    Leary WP, Reyes AJ, Acosta-Barrios TN, Maharaj B. Captopril once daily as monotherapy in patients with hyperuricaemia and hypertension. Lancet 1985; 1: 1277.Google Scholar
  142. 142.
    Weinberger MH. Comparison of captopril and hydrochlorothiazide alone and in combination in mild to moderate essential hypertension. Br J Clin Pharmacol 1982; 14(Suppl 2): 127S-131S.Google Scholar
  143. 143.
    Costa FV, Borghi C, Boschi S, Ambrosioni E. Differing dosages of captopril and hydrochlorothiazide in the treatment of hypertension: Long-term effects on metabolic values and intracellular electrolytes. J Cardiovasc Pharmacol 1985; 7(Suppl 1): S70-S76.Google Scholar
  144. 144.
    Perani G, Martignoni A, Muggia C, et al. Metabolic effects of the combination of captopril and hydrochlorothiazide in hypertensive subjects. J Clin Pharmacol 1990; 30: 1031-1035.Google Scholar
  145. 145.
    Gomez HJ, Walker HF, Moncloa F, Cirillo JA, Sromovsky JA, Gabriel M. Enalapril attenuates hydrochlorothiazideinduced hypokalemia, hypoglycemia, hyperuricemia and hypercholesterolemia. In: Puschett JB, Greenberg A, eds. New York: Elsevier Science, 1984: 263-266.Google Scholar
  146. 146.
    Malini PL, Strocchi E, Ambrosioni E, Magnani B. Long-term antihypertensive metabolic and cellular effects of enalapril. J Hypertens 1984; 2(Suppl 2): 101-105.Google Scholar
  147. 147.
    Leonetti G a nome del Gruppo Italiano di Studio di Zestoretic. Confronto degli effetti metabolici ed emodinamici della monoterapia con idroclorotiazide e dell'associazione idroclorotiazide + lisinopril. (Uno studio multicentrico italiano). Minerva Cardioangiol 1995; 43: 389-398.Google Scholar
  148. 148.
    Cifkova R, Nakov R, Novozamska E, et al. Evaluation of the effects of fixed combinations of sustained-release verapamil/ trandolapril versus captopril/hydrochlorothiazide on metabolic and electrolyte parameters in patients with essential hypertension. J Hum Hypertens 2000; 14: 347-354.Google Scholar
  149. 149.
    Graham RD. Treating mild-to-moderate hypertension: A comparison of lisinopril-hydrochlorothiazide fixed combination with captopril and hydrochlorothiazide free combination. J Hum Hypertens 1991; 5(Suppl 2): 59-60.Google Scholar
  150. 150.
    Hart W. Lisinopril-hydrochlorothiazide combination compared with the monocomponents in elderly hypertensive patients. J Hum Hypertens 1991; 5(Suppl 2): 85-89.Google Scholar
  151. 151.
    Naidoo DP, Sareli P, Marin F, et al. Increased efficacy and tolerability with losartan plus hydrochlorothiazide in patients with uncontrolled hypertension and therapy-related symptoms receiving two monotherapies. Adv Ther 1999; 16: 187-199.Google Scholar
  152. 152.
    Guul SJ, Os I, Jounela AJ. The efficacy and tolerability of enalapril in a formulation with a very low dose of hydrochlorothiazide in hypertensive patients resistant to enalapril monotherapy. Am J Hypertens 1995; 8: 727-731.Google Scholar
  153. 153.
    Lore W, Muita AK, Ogola ES. The efficacy and tolerability of enalapril-hydrochlorothiazide combination as a first line therapy in black patients with mild to moderate arterial hypertension: A clinical study in Kenya. East Afr Med J 1992; 69: 18-21.Google Scholar
  154. 154.
    Fernandez R, Puig JG, Rodriguez-Perez JC, Garrido J, Redon J, TRAVEND Study Group. Effect of two antihypertensive combinations on metabolic control in type-2 diabetic hypertensive patients with albuminuria: A randomised, double-blind study. J Hum Hypertens 2001; 15: 849-856.Google Scholar
  155. 155.
    Elisaf MS, Theodorou J, Pappas H, et al. Effectiveness and metabolic effects of perindopril and diuretics combination in primary hypertension. J Hum Hypertens 1999; 13: 787-791.Google Scholar
  156. 156.
    Nakashima M, Uematsu T, Kosuge K, Kanamuro M. Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 1992; 42: 333-335.Google Scholar
  157. 157.
    Nakashima M, Umemura K. The clinical pharmacology of losartan in Japanese subjects and patients. Blood Press 1996; 5(Suppl 2): 62-66.Google Scholar
  158. 158.
    Tikkanen I, Omvik P, Jensen HAE for the Scandinavian Study Group. Comparison of the angiotensin II antagonist losartan with the angiotensin converting enzyme inhibitor enalapril in patients with essential hypertension. J Hypertens 1995; 13: 1343-1351.Google Scholar
  159. 159.
    Mallion JM, Bradstreet DC, Makris L, et al. Antihypertensive efficacy and tolerability of once daily losartan potassium compared with captopril in patients with mild to moderate essential hypertension. J Hypertens 1995; 13(Suppl 1): S35-S41.Google Scholar
  160. 160.
    Monterroso VH, Rodriguez Chavez V, Carbajal ET, et al. Use of ambulatory blood pressure monitoring to compare antihypertensive efficacy and safety of two angiotensin II receptor antagonists, losartan and valsartan. Losartan Trial Investigators. Adv Ther 2000; 17: 117-131.Google Scholar
  161. 161.
    Kamper AL, Nielsen AH. Uricosuric effect of losartan in patients with renal transplants. Transplantation 2001; 72: 671-674.Google Scholar
  162. 162.
    Burnier M, Rutschmann B, Nussberger J, et al. Salt dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension 1993; 22: 339-347.Google Scholar
  163. 163.
    Wurzner G, Gerster JC, Chiolero A, et al. Comparative effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia and gout. J Hypertens 2001; 19: 1855-1860.Google Scholar
  164. 164.
    Takahashi S, Moriwaki Y, Yamamoto T, Tsutsumi Z, Ka T, Fukuchi M. Effects of combination treatment using antihyperuricaemic agents with fenofibrate and/or losartan on uric acid metabolism. Ann Rheum Dis 2003; 62: 572-575.Google Scholar
  165. 165.
    Manolis AJ, Grossman E, Jelakovic B, et al. Effects of losartan and candesartan monotherapy and losartan/ hydrochlorothiazide combination therapy in patients with mild to moderate hypertension. Losartan Trial Investigators. Clin Ther 2000; 22: 1186-1203.Google Scholar
  166. 166.
    Nikas S, Rizos E, Milionis H, et al. The effects of the addition of losartan on uric acid metabolism in patients receiving indapamide. J Renin Angiotensin Aldosterone Syst 2000; 1: 289-291.Google Scholar
  167. 167.
    Shahinfar S, Simpson RL, Carides AD, et al. Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia. Kidney Int 1999; 56: 1879-1885.Google Scholar
  168. 168.
    Muller P, Flesch G, de Gasparo M, Gasparini M, Howald H. Pharmacokinetics and pharmacodynamic effects of the angiotensin II antagonist valsartan at steady state in healthy, normotensive subjects. Eur J Clin Pharmacol 1997; 52: 441-449.Google Scholar
  169. 169.
    Gonzalez-Ortiz M, Mora-Martinez JM, Martinez-Abundis E, Balcazar-Munoz BR. Effect of valsartan on renal handling of uric acid in healthy subjects. J Nephrol 2000; 13: 126-128.Google Scholar
  170. 170.
    Elliott WJ, Calhoun DA, DeLucca PT, Gazdick LP, Kerns DE, Zeldin RK. Losartan versus valsartan in the treatment of patients with mild to moderate essential hypertension: Data from a multicenter, randomized, double-blind, 12-week trial. Clin Ther 2001; 23: 1166-1179.Google Scholar
  171. 171.
    Burgess ED, Buckley S. Acute natriuretic effect of telmisartan in hypertensive patients. AmJ Hypertens 2000, 13: 183A.Google Scholar
  172. 172.
    McIntyre M, MacFadyen RJ, Meredith,PA, Brouard R, Reid JL. A dose ranging study of the angiotensin II receptor antagonist irbesartan (SR 47436/BMS-186295) on blood pressure and neurohormonal effects in salt deplete man. J Cardiovasc Pharmacol 1996; 28: 101-106.Google Scholar
  173. 173.
    Ilson BE, Martin DE, Boike SC, Jorkasky DK. The effects of eprosartan, an angiotensin II AT1 receptor antagonist, on uric acid excretion in patients with mild to moderate essential hypertension. J Clin Pharmacol 1998; 38: 437-441.Google Scholar
  174. 174.
    Puig JG, Mateos F, BuÑo A, Ortega R, Rodríguez F, Dal-Ré R. Effect of eprosartan and losartan on uric acid metabolism in patients with essential hypertension. J Hypertens 1999; 17: 1033-1039.Google Scholar
  175. 175.
    Puig JG, Torres R, Ruilope LM. AT1 blockers and uric acid metabolism: Are there relevant differences? J Hypertens 2002; 20(Suppl 5): S29-S31.Google Scholar
  176. 176.
    Mountokalakis T, Rallis D, Mayopoulou-Symvoulidou D, Komninos Z. Effect of combined administration of furosemide and aspirin on urinary urate excretion in man. Klin Wochenschr 1979; 57: 1299-1301.Google Scholar
  177. 177.
    Louthrenoo W, Kasitanon N, Wichainun R, Sukitawut W. Effect of minidose aspirin on renal function and renal uric acid handling in healthy young adults. J Clin Rheumatol 2002; 8: 299-304.Google Scholar
  178. 178.
    Caspi D, Lubart E, Graff E, Habot B, Yaron M, Segal R. The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients. Arthritis Rheum 2000; 43: 103-108.Google Scholar
  179. 179.
    Elisaf M. Effects of fibrates on serum metabolic parameters. Curr Med Res Opin 2002; 18: 269-276.Google Scholar
  180. 180.
    de la Serna G, Cadarso C. Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther 1999; 66: 166-172.Google Scholar
  181. 181.
    Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Hada T. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol 2001; 28: 2294-2297.Google Scholar
  182. 182.
    Achimastos A, Liberopoulos E, Nikas S, et al. The effects of the addition of micronised fenofibrate on uric acid metabolism in patients receiving indapamide. Curr Med Res Opin 2002; 18: 59-63.Google Scholar
  183. 183.
    Feher MD, Hepburn AL, Hogarth MB, Ball SG, Kaye SA. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology (Oxford) 2003; 42: 321-325.Google Scholar
  184. 184.
    Desco MC, Asensi M, Marquez R, et al. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes2002; 51: 1118-1124.Google Scholar
  185. 185.
    Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JM. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett 1987; 213: 23-28.Google Scholar
  186. 186.
    Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314-319.Google Scholar
  187. 187.
    Hoey BM, Butler J, Halliwell B. On the specificity of allopurinol and oxypurinol as inhibitors of xanthine oxidase. A pulse radiolysis determination of rate constants for reaction of allopurinol and oxypurinol with hydroxyl radicals. Free Radic Res Commun 1988; 4: 259-263.Google Scholar
  188. 188.
    Ricardo SD, Bertram JF, Ryan GB. Podocyte architecture in puromycin aminonucleoside-treated rats administered tungsten or allopurinol. Exp Nephrol 1995; 3: 270-279.Google Scholar
  189. 189.
    Lin KC, Lin HY, Chou P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J Rheumatol 2000; 27: 1501-1505.Google Scholar
  190. 190.
    Nakanishi N, Yoshida H, Nakamura K, Suzuki K, Tatara K. Predictors for development of hyperuricemia: An8-year longitudinal study in middle-aged Japanese men. Metabolism 2001; 50: 621-626.Google Scholar
  191. 191.
    Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 2002; 47: 610-613.Google Scholar
  192. 192.
    Yu T, Berger L, Sarkozi L, Kaung C. Effects of diuretics on urate and calcium excretion. Arch Intern Med 1981; 141: 915-919.Google Scholar
  193. 193.
    Spieker LE, Ruschitzka ET, LÜscher TF, Noll G. The management of hyperuricemia and gout in patients with heart failure. Eur J Heart Fail 2002; 4: 403-410.Google Scholar
  194. 194.
    Shekarriz B, Stoller ML. Uric acid nephrourolithiasis: Current concepts and controversies. J Urol 2002; 168: 1307-1314.Google Scholar
  195. 195.
    Reyes AJ, Taylor SH. Diuretics in cardiovascular medicine: The new clinicopharmacological bases that matter. Cardiovasc Drugs Ther 1999; 13: 371-398.Google Scholar
  196. 196.
    Owens P, Kelly L, Nallen R, Ryan D, Fitzgerald D, O'Brien E. Comparison of antihypertensive and metabolic effects of losartan and losartan in combination with hydrochlorothiazide-A randomized controlled trial. J Hypertens 2000; 18: 339-345.Google Scholar
  197. 197.
    Iuliano L. The oxidant stress hypothesis of atherogenesis. Lipids 2001; 36 (Suppl): S41-S44.Google Scholar
  198. 198.
    Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003; 91(3A): 7A-11A.Google Scholar
  199. 199.
    John S, Schmieder RE. Potential mechanisms of impaired endothelial function in arterial hypertension and hypercholesterolemia. Curr Hypertens Rep 2003; 5: 199-207.Google Scholar
  200. 200.
    Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: Impact on atherosclerosis. Antioxid Redox Signal 2003; 5: 171-180.Google Scholar
  201. 201.
    Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002; 105: 1429-1435.Google Scholar
  202. 202.
    Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF. Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens 2001; 10: 247-255.Google Scholar
  203. 203.
    Wilcox CS. Reactive oxygen species: Roles in blood pressure and kidney function. Curr Hypertens Rep 2002; 4: 160-166.Google Scholar
  204. 204.
    Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW. The inflammatory aspect of the microcirculation in hypertension: Oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 2002; 9: 259-276.Google Scholar
  205. 205.
    Berges A, Van Nassauw L, Bosmans J, Timmermans JP, Vrints C. Role of nitric oxide and oxidative stress in ischaemic myocardial injury and preconditioning. Acta Cardiol 2003; 58: 119-132.Google Scholar
  206. 206.
    Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002; 8: 132-140.Google Scholar
  207. 207.
    Linke A, Recchia F, Zhang X, Hintze TH. Acute and chronic endothelial dysfunction: Implications for the development of heart failure. Heart Fail Rev 2003; 8: 87-97.Google Scholar
  208. 208.
    Byrne JA, Grieve DJ, Cave AC, Shah AM. Oxidative stress and heart failure. Arch Mal Coeur Vaiss 2003; 96: 214-221.Google Scholar
  209. 209.
    Shastry S, Hayden MR, Lucchesi PA, Tyagi SC. Matrix metalloproteinase in left ventricular remodeling and heart failure. Curr Cardiol Rep 2003; 5: 200-204.Google Scholar
  210. 210.
    Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovasc Toxicol 2001; 1: 181-193.Google Scholar
  211. 211.
    Channon KM, Guzik TJ. Mechanisms of superoxide production in human blood vessels: Relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 2002; 53: 515-524.Google Scholar
  212. 212.
    Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol 2002; 282: R335-R342.Google Scholar
  213. 213.
    Deedwania PC. Mechanisms of endothelial dysfunction in the metabolic syndrome. Curr Diab Rep 2003; 3: 289-292.Google Scholar
  214. 214.
    Kuroki T, Isshiki K, King GL. Oxidative stress: The lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003; 14(Suppl 3): S216-S220.Google Scholar
  215. 215.
    Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002; 62: 1524-1538.Google Scholar
  216. 216.
    Stenvinkel P. Interactions between inflammation, oxidative stress, and endothelial dysfunction in end-stage renal disease. J Ren Nutr 2003; 13: 144-148.Google Scholar
  217. 217.
    Lavie L. Obstructive sleep apnoea syndrome-An oxidative stress disorder. Sleep Med Rev 2003; 7: 35-51.Google Scholar
  218. 218.
    Habdous M, Herbeth B, Vincent-Viry M, et al. Serum total antioxidant status, erythrocyte superoxide dismutase and whole-blood glutathione peroxidase activities in the Stanislas cohort: Influencing factors and reference intervals. Clin Chem Lab Med 2003; 41: 209-215.Google Scholar
  219. 219.
    Nojiri S, Daida H, Mokuno H, et al. Association of serum antioxidant capacity with coronary artery disease in middleaged men. Jpn Heart J 2001; 42: 677-690.Google Scholar
  220. 220.
    Maxwell SR, Thomason H, Sandler D, et al. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 484-490.Google Scholar
  221. 221.
    Waring WS, Webb DJ, Maxwell SR. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 2001; 38: 365-371.Google Scholar
  222. 222.
    Waring WS, Convery A, Mishra V, Shenkin A, Webb DJ, Maxwell SR. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci (Lond) 2003; 105: 425-430.Google Scholar
  223. 223.
    Ward NC, Croft KD, Hodgson JM, Beilin LJ, Puddey IB. A case control comparison of total antioxidant capacity of plasma in treated and untreated hypertensive subjects. J Hypertens 2002; 20(Suppl 4): S107.Google Scholar
  224. 224.
    Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000; 148: 131-139.Google Scholar
  225. 225.
    Grum CM, Ketai LH, Myers CL, Shlafer M. Purine efflux after cardiac ischemia: Relevance to allopurinol cardioprotection. Am J Physiol 1987; 252: H368-H373.Google Scholar
  226. 226.
    Ekelund UE, Harrison RW, Shokek O, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 1999; 85: 437-445.Google Scholar
  227. 227.
    Ukai T, Cheng CP, Tachibana H, et al. Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation 2001; 103: 750-755.Google Scholar
  228. 228.
    Johnson WD, Kayser KL, Brenowitz JB, Saedi SF. A randomized controlled trial of allopurinol in coronary bypass surgery. Am Heart J 1991; 121: 20-24.Google Scholar
  229. 229.
    Parker JC, Smith EE. Effects of xanthine oxidase inhibition in cardiac arrest. Surgery 1972; 71: 339-347.Google Scholar
  230. 230.
    Rashid MA, William-Olsson G. Influence of allopurinol on cardiac complications in open heart operations. Ann Thorac Surg 1991; 52: 127-130.Google Scholar
  231. 231.
    Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001; 104: 2407-2411.Google Scholar
  232. 232.
    Guan W, Osanai T, Kamada T, et al. Effect of allopurinol pretreatment on free radical generation after primary coronary angioplasty for acute myocardial infarction. J Cardiovasc Pharmacol 2003; 41: 699-705.Google Scholar
  233. 233.
    Butler R, Morris AD, Belch JJ, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 2000; 35: 746-751.Google Scholar
  234. 234.
    Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral bloodflowin hyperuricemic patients with chronic heart failure: Results from 2 placebo-controlled studies. Circulation 2002; 105: 2619-2624.Google Scholar
  235. 235.
    Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221-226.Google Scholar
  236. 236.
    Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 2003; 107: 416-421.Google Scholar
  237. 237.
    Landmesser U, Drexler H. Allopurinol and endothelial function in heart failure. Future or fantasy? Circulation 2002; 106: 173-175.Google Scholar
  238. 238.
    Reyes AJ, Leary WP. The ALLHAT and the cardioprotection conferred by diuretics in hypertensive patients: A connection with uric acid? Cardiovasc Drugs Ther 2002; 16: 485-487.Google Scholar
  239. 239.
    Reyes AJ, Leary WP. Theincrease in serum uric acid induced by diuretics could be beneficial to cardiovascular prognosis in hypertension: A hypothesis. J Hypertens 2003; 21: 1775-1777.Google Scholar
  240. 240.
    Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidantand radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858-6862.Google Scholar
  241. 241.
    Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992; 34: 78-84.Google Scholar
  242. 242.
    Benzie IF. Evolution of antioxidant defence mechanisms. Eur J Nutr 2000; 39: 53-61.Google Scholar
  243. 243.
    Watanabe S, Kang DH, Feng L, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002; 40: 355-360.Google Scholar
  244. 244.
    Fang J, Alderman MH. Serum uric acid and cardiovascular mortality in the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA 2000; 283: 2404-2410.Google Scholar
  245. 245.
    Goldberg RJ, Burchfiel CM, Benfante R, Chiu D, Reed DM, Yano K. Lifestyle and biologic factors associated with atherosclerotic disease in middle-aged men. 20-year findings from the Honolulu Heart Program. Arch Intern Med 1995; 155: 686-694.Google Scholar
  246. 246.
    Puddu PE, Lanti M, Menotti A, et al. Serum uric acid for short-term prediction of cardiovascular disease incidence in the Gubbio population Study. Acta Cardiol 2001; 56: 243-251.Google Scholar
  247. 247.
    Alderman MH, Cohen H, Madhavan S, Kivlighn S. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 1999; 34: 144-150.Google Scholar
  248. 248.
    Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 2000; 36: 1072-1078.Google Scholar
  249. 249.
    Wang JG, Staessen JA, Fagard RH, Birkenhager WH, Gong L, Liu L. Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension. Hypertension 2001; 37: 1069-1074.Google Scholar
  250. 250.
    Bickel C, Rupprecht HJ, Blankenberg S, et al. Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease. AmJ Cardiol 2002; 89: 12-17.Google Scholar
  251. 251.
    Pedersen A-B, Jørgensen S, Køber L, Ottesen M, Torp-Pedersen C, Kjøller E. The prognostic importance of serum uric acid in patients with acute myocardial infarction and left ventricular dysfunction. Eur Heart J 2000; 21 (Abstract Suppl): 180.Google Scholar
  252. 252.
    Anker SD, Doehner W, Rauchhaus M, et al. Uric acid and survival in chronic heart failure: Validation and application in metabolic, functional, and hemodynamic staging. Circulation 2003; 107: 1991-1997.Google Scholar
  253. 253.
    Mazza A, Pessina AC, Pavei A, Scarpa R, Tikhonoff V, Casiglia E. Predictors of stroke mortality in elderly people from the general population. The CArdiovascular STudy in the ELderly. Eur J Epidemiol 2001; 17: 1097-104.Google Scholar
  254. 254.
    Weir CJ, Muir SW, Walters MR, Lees KR. Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke. Stroke 2003; 34: 1951-1956.Google Scholar
  255. 255.
    Hoieggen A, Fossum E, Reims H, Kjeldsen SE. Serum uric acid and hemorheology in borderline hypertensives and in subjects with established hypertension and left ventricular hypertrophy. Blood Press 2003; 12: 104-110.Google Scholar
  256. 256.
    Chu NF, Wang DJ, Liou SH, Shieh SM. Relationship between hyperuricemia and other cardiovascular disease risk factors among adult males in Taiwan. Eur J Epidemiol 2000; 16: 13-17.Google Scholar
  257. 257.
    Strazzullo P, Barba G, Cappuccio FP, et al. Altered renal sodium handling in men with abdominal adiposity: A link to hypertension. J Hypertens 2001; 19: 2157-2164.Google Scholar
  258. 258.
    Ben-Noun LL, Laor A. Relationship of neck circumference to cardiovascular risk factors. Obes Res 2003; 11: 226-223.Google Scholar
  259. 259.
    Schmidt MI, Watson RL, Duncan BB, et al. Clustering of dyslipidemia, hyperuricemia, diabetes, and hypertension and its association with fasting insulin and central and overall obesity in a general population. Atherosclerosis Risk in Communities Study Investigators. Metabolism 1996; 45: 699-706.Google Scholar
  260. 260.
    Nagahama K, Inoue T, Touma T, Tozawa M, Iseki K, Takishita S. Effect of hyperuricemia on cardiovascular risk factor clustering in a screened cohort in Okinawa, Japan. J Hypertens 2002; 20(Suppl 4): S152.Google Scholar
  261. 261.
    Nakanishi N, Suzuki K, Tatara K. Clustering of cardiovascular risk factors and risk of development of hypertension in Japanese male office workers. J Cardiovasc Risk 2003; 10: 213-220.Google Scholar
  262. 262.
    de la Sierra A, Bragulat E, Sierra C, et al. Microalbuminuria in essential hypertension: Clinical and biochemical profile. Br J Biomed Sci 2000; 57: 287-291.Google Scholar
  263. 263.
    Arnold JM, Yusuf S, Young J, et al. Prevention of heart failure in patients in the Heart Outcomes Prevention Evaluation (HOPE) study. Circulation 2003; 107: 1284-1290.Google Scholar
  264. 264.
    Inoue T, Matsuoka M, Nagahama K, et al. Cardiovascular risk factors associated with pulse pressure in a screened cohort in Okinawa, Japan. Hypertens Res 2003; 26: 153-158.Google Scholar
  265. 265.
    Saito M, Ishimitsu T, Minami J, Ono H, Ohrui M, Matsuoka H. Relations of plasma high-sensitivity C-reactive protein to traditional cardiovascular risk factors. Atherosclerosis 2003; 16: 73-79.Google Scholar
  266. 266.
    Tamakoshi K, Yatsuya H, Kondo T, et al. The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. Int J Obes Relat Metab Disord 2003; 27: 443-449.Google Scholar
  267. 267.
    Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K. Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol 2003; 18: 523-530.Google Scholar
  268. 268.
    Cappuccio FP, Strazzullo P, Siani A, Trevisan M. Increased proximal sodium reabsorption is associated with increased cardiovascular risk in men. J Hypertens 1996; 14: 909-914.Google Scholar
  269. 269.
    Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: The Framingham Heart study. Ann Intern Med 1999; 131: 7-13.Google Scholar
  270. 270.
    Sakata K, Hashimoto T, Ueshima H, Okayama A, NIPPON DATA 80 Research Group. Absence of an association between serum uric acid and mortality from cardiovascular disease: NIPPON DATA 80, 1980-1994. National Integrated Projects for Prospective Observation of Noncommunicable Diseases and its Trend in the Aged. Eur J Epidemiol 2001; 17: 461-468.Google Scholar
  271. 271.
    Lu P, Hu D, Lu J,WangW, Chen B. The association between uric acid and coronary heart disease. Zhonghua Nei Ke Za Zhi 2002; 41: 526-529. [Article in Chinese; the author read the abstract publicised by PubMed.]Google Scholar
  272. 272.
    Wannamethee SG, Shaper AG, Whincup PH. Serum urate and the risk of major coronary heart disease events. Heart 1997; 78: 147-153.Google Scholar
  273. 273.
    Moriarity JT, Folsom AR, Iribarren C, Nieto FJ, Rosamond WD. Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol 2000; 10: 136-143.Google Scholar
  274. 274.
    Martïn Gonźalez R, Romero Escobar H, Vioqué J, Peris Martí A, Matías-Guiu Guía J. La hiperuricemia como factor de riesgo del accidente vascular cerebral: Estudio casocontrol. Rev Neurol 2000; 31: 8-13.Google Scholar
  275. 275.
    Janssens H, Van De Lisdonk E, Bor H, Van Den Hoogen H, Janssen M. Gout, just a nasty event or a cardiovascular signal? A study from primary care. Fam Pract 2003; 20: 413-416.Google Scholar
  276. 276.
    Johnson RJ, Kang DH, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003; 41: 1287-1293.Google Scholar
  277. 277.
    Culleton BF. Uric acid and cardiovascular disease: A renal-cardiac relationship? Curr Opin Nephrol Hypertens 2001; 10: 371-375.Google Scholar
  278. 278.
    Psaty BM, Lumley TT, Furberg CD, et al. Health outcomes associated with various antihypertensive therapies used as first-line agents. A network meta-analysis. JAMA 2003; 289: 2534-2544.Google Scholar
  279. 279.
    The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensinconverting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288: 2981-2997.Google Scholar
  280. 280.
    Faris R, Flather M, Purcell H, Henein M, Poole-Wilson P, Coats A. Current evidence supporting the role of diuretics in heart failure: A meta analysis of randomised controlled trials. Int J Cardiol 2002; 82: 149-158.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ariel J. Reyes
    • 1
  1. 1.Institute of Cardiovascular TheoryMontevideoUruguay

Personalised recommendations