Breast Cancer Research and Treatment

, Volume 87, Issue 1, pp 65–74 | Cite as

Comparative Analysis Between the HER2 Status in Primary Breast Cancer Tissue and the Detection of Isolated Tumor Cells in the Bone Marrow

  • C. Schindlbeck
  • W. Janni
  • N. Shabani
  • B. Rack
  • B. Gerber
  • M. Schmitt
  • N. Harbeck
  • H. Sommer
  • S. Braun
  • K. Friese
Article

Abstract

The presence of isolated tumor cells in the bone marrow (ITC-BM) of breast cancer patients is an independent prognostic parameter, indicating hematogenous tumor cell dissemination. While the HER2 status of breast cancer tissue has predictive value for the efficacy of different therapies, its prognostic relevance is controversial. To investigate the relationship between HER2 and ITC-BM, we retrospectively analyzed tumor tissues of 327 patients who underwent bone marrow aspiration at primary diagnosis or during the disease-free interval. Screening for ITC-BM was performed immunocytochemically, using the anti-cytokeratin antibody A45 B/B3. HER2 was determined by immunohistochemistry (IHC) with the antibody CB 11 (n= 277) and by fluorescence in situ hybridization (FISH, PathVision, Vysis, n= 206).

ITC-BM were found in 83 of 327 patients (25.4%), with a median of 2.0 per 2 × 106mononuclear cells. HER2 positivity (2+/3+) was demonstrated in 18.8% of the tumors, amplification by FISH in 56 of 206 cases (27.2%). Established pathological parameters,tiviathological parameters, such as tumor size (p= 0.15), lymph node status (p= 0.93) and HER2 did not predict the presence of ITC-BM. After a median follow-up of 49months (1–255), the presence of ITC-BM was a significant prognostic factor for distant disease free and overall survival, as well in univariate (log-rank-test, p= 0.024) as in multivariate analysis (cox-regression, p= 0.033 ). This also was confirmed in subgroups of patients by aease free survival (p= 0.013) and local recurrence (p= 0.003).

The detection of ITC-BM is superior in predicting overall survival, compared to the HER2 status of the primary tumor. The direct identification of HER2 on ITC-BM is the aim of ongoing research, potentially synergizing the prognostic relevance of ITC-BM and the predictive value of the HER2 status.

bone marrow breast cancer HER2 isolated tumor cells metastases minimal residual disease prognosis therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peto R, Boreham J, Clarke M, Davies C, Beral V: UK and USA breast cancer deaths down 25 % in year 2000 at ages 20–69 years. Lancet 355(9217): 1822, 2000CrossRefGoogle Scholar
  2. 2.
    Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N: Twenty-ve-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347(8): 567–575, 2002CrossRefPubMedGoogle Scholar
  3. 3.
    Pantel K, Braun S: Molecular determinants of occult metastatic tumor cells in bone marrow. Clin Breast Cancer 2(3): 222–228, 2001PubMedGoogle Scholar
  4. 4.
    Sloane JP, Ormerod MG, Neville AM: Potential patholog-ical application of immunocytochemical methods to the detection of micrometastases. Cancer Res 40(8 Pt 2): 3079–3082, 1980PubMedGoogle Scholar
  5. 5.
    Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W: Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol;19(16): 3669–3674, 2001PubMedGoogle Scholar
  6. 6.
    Janni W, Gastroph S, Hepp F, Kentenich C, Rjosk D, Schindlbeck C et al.: Prognostic significance of an increased number of micrometastatic tumor cells in the bone marrow of patients with rst recurrence of breast carcinoma. Cancer 88(10): 2252–2259, 2000CrossRefPubMedGoogle Scholar
  7. 7.
    Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR et al.: Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342(8): 525–533, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H et al.: Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21(18): 3469–3478, 2003CrossRefPubMedGoogle Scholar
  9. 9.
    Gerber B, Krause A, Muller H, Richter D, Reimer T, Makovitzky J et al.: Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19(4): 960–971, 2001PubMedGoogle Scholar
  10. 10.
    Holbro T, Civenni G, Hynes NE: The ErbB receptors and their role in cancer progression. Exp Cell Res 284(1): 99–110, 2003CrossRefPubMedGoogle Scholar
  11. 11.
    Di Leo A, Dowsett M, Horten B, Penault-Llorca F.: Current status of HER2 testing. Oncology 63 (Suppl 1): 25–32, 2002CrossRefPubMedGoogle Scholar
  12. 12.
    Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R: Assessment of methods for tissue-based detec-tion of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18(21): 3651–3664, 2000PubMedGoogle Scholar
  13. 13.
    Naume B, Borgen E, Kvalheim G, Karesen R, Qvist H, Sauer T et al.: Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: compar-ison with preoperative clinical parameters and primary tumor characteristics. Clin Cancer Res 7(12): 4122–4129, 2001PubMedGoogle Scholar
  14. 14.
    Mansi JL, Gogas H, Bliss JM, Gazet JC, Berger U, Coombes RC: Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354(9174): 197–202, 1999CrossRefPubMedGoogle Scholar
  15. 15.
    Landys K, Persson S, Kovarik J, Hultborn R, Holmberg E: Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat 49(1): 27–33, 1998CrossRefPubMedGoogle Scholar
  16. 16.
    Braun S, Vogl FD, Schlimok G, Diel IJ, Janni W, Gerber B et al.: Pooled analysis of prognostic impact of bone marrow micrometastasis: 10-year survival of 4199 breast cancer patients. Presentation, 26th Annual San Antonio Breast Cancer Symposium. Ref type: Abstract, 2003Google Scholar
  17. 17.
    Fox SB, Leek RD, Bliss J, Mansi JL, Gusterson B, Gatter KC et al.: Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients. J Natl Cancer Inst 89(14): 1044–1049, 1997CrossRefPubMedGoogle Scholar
  18. 18.
    Menard S, Squicciarini P, Luini A, Sacchini V, Rovini D, Tagliabue E et al.: Immunodetection of bone marrow micrometastases in breast carcinoma patients and its correlation with primary tumour prognostic features. Br J Cancer 69(6): 1126–1129, 1994PubMedGoogle Scholar
  19. 19.
    Bartlett J, Mallon E, Cooke T: The clinical evaluation of HER-2 status: which test to use? J Pathol 199(4): 411–417, 2003CrossRefGoogle Scholar
  20. 20.
    Hanna W: Testing for HER2 status. Oncology 61 (Suppl 2): 22–30, 2001CrossRefPubMedGoogle Scholar
  21. 21.
    Chearskul S, Onreabroi S, Churintrapun M, Semprasert N, Bhothisuwan K: Immunohistochemical study of c-erbB-2 expression in primary breast cancer. Asian Pac J Allergy Immunol 19(3): 197–205, 2001PubMedGoogle Scholar
  22. 22.
    Bartlett JM, Going JJ, Mallon EA, Watters AD, Reeves JR, Stanton P, et al.: Evaluating HER2 ampli cation and overexpression in breast cancer. J Pathol 2001;195(4): 422–428, 2001CrossRefGoogle Scholar
  23. 23.
    Gancberg D, Jarvinen T, Di Leo A, Rouas G, Cardoso F, Paesmans M et al.: Evaluation of HER-2/NEU protein expression in breast cancer by immunohistochemistry: an interlaboratory study assessing the reproducibility of HER-2/NEU testing. Breast Cancer Res Treat 74(2): 113–120, 2002CrossRefPubMedGoogle Scholar
  24. 24.
    Press MF, Hung G, Godolphin W, Slamon DJ: Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res 54(10): 2771–2777, 1994PubMedGoogle Scholar
  25. 25.
    Roche PC, Suman VJ, Jenkins RB, Davidson NE, Martino S, Kaufman PA et al.: Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. J Natl Cancer Inst 94(11): 855–857, 2002PubMedGoogle Scholar
  26. 26.
    Riou G, Mathieu MC, Barrois M, Le Bihan ML, Ah-omadegbe JC, Benard J et al.: c-erbB-2 (HER-2/neu)gene ampli cation is a better indicator of poor prognosis than protein over-expression in operable breast-cancer patients. Int J Cancer 95(4): 266–270, 2001CrossRefPubMedGoogle Scholar
  27. 27.
    Sauer T, Wiedswang G, Boudjema G, Christensen H, Karesen R: Assessment of HER-2/neu overexpression and/ or gene ampli cation in breast carcinomas: should in situ hybridization be the method of choice? APMIS 111(3): 444–450, 2003CrossRefPubMedGoogle Scholar
  28. 28.
    Lebeau A, Deimling D, Kaltz C, Sendelhofert A, I. A, Luthardt B et al.: Her-2/neu analysis in archival tissue samples of human breast cancer: comparison of immuno-histochemistry and fluorescence in situ hybridization. J Clin Oncol 19(2): 354–363, 2001PubMedGoogle Scholar
  29. 29.
    Dowsett M, Bartlett J, Ellis IO, Salter J, Hills M, Mallon E et al.: Correlation between immunohistochemistry (Hercep-Test)and fluorescence in situ hybridization (FISH)for HER-2 in 426 breast carcinomas from 37 centres. J Pathol 199(4): 418–423, 2003CrossRefPubMedGoogle Scholar
  30. 30.
    Kakar S, Puangsuvan N, Stevens JM, Serenas R, Mangan G, Sahai S et al.: HER-2/neu assessment in breast cancer by immunohistochemistry and fluorescence in situ hybridiza-tion: comparison of results and correlation with survival. Mol Diagn 5(3): 199–207, 2000CrossRefPubMedGoogle Scholar
  31. 31.
    Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmuller G et al.: ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res 61(5): 1890–1895, 2001PubMedGoogle Scholar
  32. 32.
    Muller P, Weckermann D, Riethmuller G, Schlimok G: Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization. Cancer Genet Cytogenet 88(1): 8–16, 1996CrossRefPubMedGoogle Scholar
  33. 33.
    Ross JS, Fletcher JA: The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 1998;16(6): 413–428, 1998Google Scholar
  34. 34.
    Mirza AN, Mirza NQ, Vlastos G, Singletary SE: Prognostic factors in node-negative breast cancer: a review of studies with sample size more than 200 and follow-up more than 5 years. Ann Surg 235(1): 10–26, 2002CrossRefPubMedGoogle Scholar
  35. 35.
    Kakar S, Puangsuvan N, Stevens JM, Serenas R, Mangan G, Sahai S et al.: HER-2/neu assessment in breast cancer by immunohistochemistry and fluorescence in situ hybridiza-tion: comparison of results and correlation with survival. Mol Diagn 5(3): 199–207, 2000CrossRefPubMedGoogle Scholar
  36. 36.
    Spizzo G, Obrist P, Ensinger C, Theurl I, Dunser M, Ramoni A: Prognostic signi cance of Ep-CAM AND Her-2/neu overexpression in invasive breast cancer. Int J Cancer 98(6): 883–888, 2002CrossRefPubMedGoogle Scholar
  37. 37.
    Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S: Prognostic value of c-erbB2 expression in breast cancer. J Surg Oncol 79(4): 216–223, 2002CrossRefPubMedGoogle Scholar
  38. 38.
    Cooke T, Reeves J, Lanigan A, Stanton P: HER2 as a prognostic and predictive marker for breast cancer. Ann Oncol 12 (Suppl 1): S23–S28, 2001CrossRefPubMedGoogle Scholar
  39. 39.
    Harries M, Smith I: The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 9(2): 75–85, 2002CrossRefPubMedGoogle Scholar
  40. 40.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al.: Efficacy and safety of trast-uzumab as a single agent in rst-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3): 719–726, 2002CrossRefPubMedGoogle Scholar
  41. 41.
    Janni W, Hepp F, Rjosk D, Kentenich C, Strobl B, Schindlbeck C et al. The fate and prognostic value of occult metastatic cells in the bone marrow of patients with breast carcinoma between primary treatment and recurrence. Cancer 92(1): 46–53, 2001CrossRefPubMedGoogle Scholar
  42. 42.
    Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G et al.: Differential expression of proliferation-associated molecules in individual micrometastatic carci-noma cells. J Natl Cancer Inst 85(17): 1419–1424, 1993PubMedGoogle Scholar
  43. 43.
    Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F et al.; Lack of effect of adjuvant chemother-apy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18(1): 80–86, 2000PubMedGoogle Scholar
  44. 44.
    Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmuller G, et al.: Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5(12): 3999–4004, 1999PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Schindlbeck
    • 1
  • W. Janni
    • 1
  • N. Shabani
    • 1
  • B. Rack
    • 1
  • B. Gerber
    • 1
  • M. Schmitt
    • 2
  • N. Harbeck
    • 2
  • H. Sommer
    • 2
  • S. Braun
    • 3
  • K. Friese
    • 2
  1. 1.I. Frauenklinik, Klinikum der Ludwig-Maximilians-UniversitätMunichGermany
  2. 2.Frauenklinik, Klinikum Rechts der Isar, Technical UniversityMunichGermany
  3. 3.Universitätsklinik für Frauenheilkunde, Leopold-Franzens-UniversityInnsbruckAustria

Personalised recommendations