Breast Cancer Research and Treatment

, Volume 82, Issue 3, pp 169–183

Venezuelan Equine Encephalitis Replicon Immunization Overcomes Intrinsic Tolerance and Elicits Effective Anti-tumor Immunity to the ‘Self’ tumor-associated antigen, neu in a Rat Mammary Tumor Model

  • Edward L. Nelson
  • Darue Prieto
  • Terri G. Alexander
  • Peter Pushko
  • Loreen A. Lofts
  • Jonathan O. Rayner
  • Kurt I. Kamrud
  • Bolyn Fralish
  • Jonathan F. Smith


Many tumor-associated antigens (TAAs) represent ‘self’ antigens and as such, are subject to the constraints of immunologic tolerance. There are significant barriers to eliciting anti-tumor immune responses of sufficient magnitude. We have taken advantage of a Venezuelan equine encephalitis-derived alphavirus replicon vector system with documented in vivo tropism for immune system dendritic cells. We have overcome the intrinsic tolerance to the ‘self’ TAA rat neu and elicited an effective anti-tumor immune response using this alphavirus replicon vector system and a designed target antigen in a rigorous rat mammary tumor model. We have demonstrated the capacity to generate 50% protection in tumor challenge experiments (p = 0.004) and we have confirmed the establishment of immunologic memory by both second tumor challenge and Winn Assay (p = 0.009). Minor antibody responses were identified and supported the establishment of T helper type 1 (Th1) anti-tumor immune responses by isotype. Animals surviving in excess of 300 days with established effective anti-tumor immunity showed no signs of autoimmune phenomena. Together these experiments support the establishment of T lymphocyte dependent, Th1-biased anti-tumor immune responses to a non-mutated ‘self’ TAA in an aggressive tumor model. Importantly, this tumor model is subject to the constraints of immunologic tolerance present in animals with normal developmental, temporal, and anatomical expression of a non-mutated TAA. These data support the continued development and potential clinical application of this alphaviral replicon vector system and the use of appropriately designed target antigen sequences for anti-tumor immunotherapy.

breast cancer immunotherapy neu rat tumor model replicon vector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jemal A, Thomas A, Murray T, Thun M: Cancer statistics, 2002. CA Cancer J Clin 52: 23-47, 2002Google Scholar
  2. 2.
    Croce MV, Price MR, Segal-Eiras A: Expression of monoclonal-antibody-defined antigens in fractions isolated from human breast carcinomas and patients' serum. Cancer Immunol Immunother 40: 132-137, 1995Google Scholar
  3. 3.
    Angelopoulou K, Yu H, Bharaj B, Giai M, Diamandis EP: p53 gene mutation, tumor p53 protein overexpression, and serum p53 autoantibody generation in patients with breast cancer. Clin Biochem 33: 53-62, 2000Google Scholar
  4. 4.
    Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB et al.: Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54: 16-20, 1994Google Scholar
  5. 5.
    Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA: High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15: 3363-3367, 1997Google Scholar
  6. 6.
    Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT: A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 63: 298-304, 1996Google Scholar
  7. 7.
    Sandmaier BM, Oparin DV, Holmberg LA, Reddish MA, MacLean GD, Longenecker BM: Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. J Immunother 22: 54-66, 1999Google Scholar
  8. 8.
    Tilkin AF, Lubin R, Soussi T, Lazar V, Janin N, Mathieu MC, Lefrere I, Carlu C, Roy M, Kayibanda M et al.: Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 25: 1765-1769, 1995Google Scholar
  9. 9.
    Houghton AN: Cancer antigens: immune recognition of self and altered self. J Exp Med 180: 1-4, 1994Google Scholar
  10. 10.
    Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, Taidi-Laskowski B, Levy R: Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma-long-term results of a clinical trial. Blood 89: 3129-3135, 1997Google Scholar
  11. 11.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Sznol M, Schwarz SL, Spiess PJ, Wunderlich JR, Seipp CA, Einhorn JH, Rogers-Freezer L, White DE: Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 163: 1690-1695, 1999Google Scholar
  12. 12.
    Bendandi M, Gocke CD, Kobrin CB, Benko FA, Sternas LA, Pennington R, Watson TM, Reynolds CW, Gause BL, Duffey PL, Jaffe ES, Creekmore SP, Longo DL, Kwak LW: Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 5: 1171-1177, 1999Google Scholar
  13. 13.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850-854, 2002Google Scholar
  14. 14.
    Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC: Evolutionary relationships and systematics of the alphaviruses. J Virol 75: 10118-10131, 2001Google Scholar
  15. 15.
    Strauss JH, Strauss EG: The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491-562, 1994Google Scholar
  16. 16.
    MacDonald GH, Johnston RE: Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 74: 914-922, 2000Google Scholar
  17. 17.
    Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, Wu TC: Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8: 376-383, 2001Google Scholar
  18. 18.
    Andersson C, Vasconcelos NM, Sievertzon M, Haddad D, Liljeqvist S, Berglund P, Liljestrom P, Ahlborg N, Stahl S, Berzins K: Comparative immunization study using RNA and DNA constructs encoding a part of the Plasmodium falciparum antigen Pf332. Scand J Immunol 54: 117-124, 2001Google Scholar
  19. 19.
    DiCiommo DP, Bremner R: Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 273: 18060-18066, 1998Google Scholar
  20. 20.
    Leitner WW, Ying H, Driver DA, Dubensky TW, Restifo NP: Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res 60: 51-55, 2000Google Scholar
  21. 21.
    Kohno A, Emi N, Kasai M, Tanimoto M, Saito H: Semliki Forest virus-based DNA expression vector: transient protein production followed by cell death. Gene Ther 5: 415-418, 1998Google Scholar
  22. 22.
    Johanning FW, Conry RM, LoBuglio AF, Wright M, Sumerel LA, Pike MJ, Curiel DT: A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res 23: 1495-1501, 1995Google Scholar
  23. 23.
    Dubensky Jr TW, Driver DA, Polo JM, Belli BA, Latham EM, Ibanez CE, Chada S, Brumm D, Banks TA, Mento SJ, Jolly DJ, Chang SM: Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol 70: 508-519, 1996Google Scholar
  24. 24.
    Schlesinger S: Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 1: 177-191, 2001Google Scholar
  25. 25.
    Morris-Downes MM, Phenix KV, Smyth J, Sheahan BJ, Lileqvist S, Mooney DA, Liljestrom P, Todd D, Atkins GJ: Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine 19: 1978-1988, 2001Google Scholar
  26. 26.
    Lundstrom K, Schweutzer C, Richards JG, Ehrengruber MU, Jenck F, Mulhardt C: Semliki Forest virus vectors for in vitro and in vivo applications. Gene Ther Mol Biol 4: 23-31, 1999Google Scholar
  27. 27.
    Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, Elmishad AG, Kast WM, Smith LR: Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 61: 7861-7867, 2001Google Scholar
  28. 28.
    Lachman LB, Rao XM, Kremer RH, Ozpolat B, Kiriakova G, Price JE: DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 8: 259-268, 2001Google Scholar
  29. 29.
    Cheng WF, Hung CF, Hsu KF, Chai CY, He L, Polo JM, Slater LA, Ling M, Wu TC: Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen Fusion. Hum Gene Ther 13: 553-568, 2002Google Scholar
  30. 30.
    Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG: Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg 94: 474-481, 2001Google Scholar
  31. 31.
    Frolov I, Frolova E, Schlesinger S: Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J Virol 71: 2819-2829, 1997Google Scholar
  32. 32.
    Geisbert TW, Pushko P, Anderson K, Smith J, Davis KJ, Jahrling PB: Evaluation in nonhuman primates of vaccines against Ebola virus. Emerg Infect Dis 8: 503-507, 2002Google Scholar
  33. 33.
    Lee JS, Dyas BK, Nystrom SS, Lind CM, Smith JF, Ulrich RG: Immune protection against staphylococcal enterotoxininduced toxic shock by vaccination with a Venezuelan equine encephalitis virus replicon. J Infect Dis 185: 1192-1196, 2002Google Scholar
  34. 34.
    Balasuriya UB, Heidner HW, Davis NL, Wagner HM, Hullinger PJ, Hedges JF, Williams JC, Johnston RE, David Wilson W, Liu IK, James MacLachlan N: Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine 20: 1609-1617, 2002Google Scholar
  35. 35.
    Harrington PR, Yount B, Johnston RE, Davis N, Moe C, Baric RS: Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol 76: 730-742, 2002Google Scholar
  36. 36.
    Wilson JA, Hart MK: Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J Virol 75: 2660-2664, 2001Google Scholar
  37. 37.
    Schultz-Cherry S, Dybing JK, Davis NL, Williamson C, Suarez DL, Johnston R, Perdue ML: Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses. Virology 278: 55-59, 2000Google Scholar
  38. 38.
    Pushko P, Bray M, Ludwig GV, Parker M, Schmaljohn A, Sanchez A, Jahrling PB, Smith JF: Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 19: 142-153, 2000Google Scholar
  39. 39.
    Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, McGrath KM, Connell MJ, Montefiori DC, Frelinger JA, Swanstrom R, Johnson PR, Johnston RE: Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 74: 371-378, 2000Google Scholar
  40. 40.
    Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A: Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 251: 28-37, 1998Google Scholar
  41. 41.
    Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF: Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239: 389-401, 1997Google Scholar
  42. 42.
    Attia MA, DeOme KB, Weiss DW: Immunology of spontaneous mammary carcinomas in mice II. Resistance to a rapidly and a slowly developing tumor. Cancer Res 25: 451-457, 1965Google Scholar
  43. 43.
    Foy TM, Bannink J, Sutherland RA, McNeill PD, Moulton GG, Smith J, Cheever MA, Grabstein K: Vaccination with Her-2/neu DNA or protein subunits protects against growth of a Her-2/neu-expressing murine tumor. Vaccine 19: 2598-2606, 2001Google Scholar
  44. 44.
    Pilon SA, Piechocki MP, Wei WZ: Vaccination with cytoplasmic ErbB-2 DNA protects mice from mammary tumor growth without anti-ErbB-2 antibody. J Immunol 167: 3201-3206, 2001Google Scholar
  45. 45.
    Piechocki MP, Pilon SA, Wei WZ: Complementary antitumor immunity induced by plasmid DNA encoding secreted and cytoplasmic human ErbB-2. J Immunol 167: 3367-3374, 2001Google Scholar
  46. 46.
    Mukai K, Yasutomi Y, Watanabe M, Kenjo A, Aota T, Wang L, Nishikawa H, Ishihara M, Fujita T, Kuribayashi K, Shiku H: HER2 peptide-specific CD8(+) T cells are proportionally detectable long after multiple DNA vaccinations. Gene Ther 9: 879-888, 2002Google Scholar
  47. 47.
    Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI, Muller WJ, Dixon KH, Jaffee EM: HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60: 3569-3576, 2000Google Scholar
  48. 48.
    Weinstein EJ, Kitsberg DI, Leder P: A mouse model for breast cancer induced by amplification and overexpression of the neu promoter and transgene. Mol Med 6: 4-16, 2000Google Scholar
  49. 49.
    Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578-10582, 1992Google Scholar
  50. 50.
    Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P: Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57: 931-936, 1989Google Scholar
  51. 51.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105-115, 1988Google Scholar
  52. 52.
    Nanni P, Nicoletti G, De Giovanni C, Landuzzi L, Di Carlo E, Cavallo F, Pupa SM, Rossi I, Colombo MP, Ricci C, Astolfi A, Musiani P, Forni G, Lollini PL: Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J Exp Med 194: 1195-1205, 2001Google Scholar
  53. 53.
    Pupa SM, Invernizzi AM, Forti S, Di Carlo E, Musiani P, Nanni P, Lollini PL, Meazza R, Ferrini S, Menard S: Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Ther 8: 75-79, 2001Google Scholar
  54. 54.
    Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61: 3689-3697, 2001Google Scholar
  55. 55.
    Rovero S, Boggio K, Carlo ED, Amici A, Quaglino E, Porcedda P, Musiani P, Forni G: Insertion of the DNA for the 163-171 peptide of IL1beta enables a DNA vaccine encoding p185(neu) to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mice. Gene Ther 8: 447-452, 2001Google Scholar
  56. 56.
    Di Carlo E, Rovero S, Boggio K, Quaglino E, Amici A, Smorlesi A, Forni G, Musiani P: Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clin Cancer Res 7: 830s-837s, 2001Google Scholar
  57. 57.
    Reilly RT, Machiels JP, Emens LA, Ercolini AM, Okoye FI, Lei RY, Weintraub D, Jaffee EM: The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res 61: 880-883, 2001Google Scholar
  58. 58.
    Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K: Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319: 230-234, 1986Google Scholar
  59. 59.
    Bargmann CI, Hung MC, Weinberg RA: The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319: 226-230, 1986Google Scholar
  60. 60.
    Agus DB, Bunn Jr PA, Franklin W, Garcia M, Ozols RF: HER-2/neu as a therapeutic target in non-small cell lung cancer, prostate cancer, and ovarian cancer. Semin Oncol 27: 53-63; discussion 92-100, 2000Google Scholar
  61. 61.
    Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J 19: 3159-3167, 2000Google Scholar
  62. 62.
    Hung MC, Lau YK: Basic science of HER-2/neu: a review. Semin Oncol 26: 51-59, 1999Google Scholar
  63. 63.
    Lofts FJ, Gullick WJ: c-erbB2 amplification and overexpression in human tumors. Cancer Treat Res 61: 161-179, 1992Google Scholar
  64. 64.
    Press MF, Jones LA, Godolphin W, Edwards CL, Slamon DJ: HER-2/neu oncogene amplification and expression in breast and ovarian cancers. Prog Clin Biol Res 354A: 209-221, 1990Google Scholar
  65. 65.
    Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E: Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59: 431-435, 1999Google Scholar
  66. 66.
    Castilleja A, Carter D, Efferson CL, Ward NE, Kawano K, Fisk B, Kudelka AP, Gershenson DM, Murray JL, O'Brian CA, Ioannides CG: Induction of tumor-reactive CTL by C-side chain variants of the CTL epitope HER-2/neu protooncogene (369-377) selected by molecular modeling of the peptide: HLA-A2 complex. J Immunol 169: 3545-3554, 2002Google Scholar
  67. 67.
    Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL: Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 6: 1347-1350, 2000Google Scholar
  68. 68.
    Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K: Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20: 2624-2632, 2002Google Scholar
  69. 69.
    Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A: Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding af-finity. J Immunol 167: 787-796, 2001Google Scholar
  70. 70.
    Kobayashi H, Kennedy R, Lu J, Davila E, Celis E: MHC-binding peptides as immunotherapeutics for cancer. Immunol Invest 29: 105-110, 2000Google Scholar
  71. 71.
    Lee TV, Johnston DA, Thomakos N, Honda T, Efferson CL, Ioannides CG: Helper peptide G89 (HER-2: 777-789) and G89-activated cells regulate the survival of effectors induced by the CTL epitope E75 (HER-2, 369-377). Correlation with the IFN-gamma: IL-10 balance. Anticancer Res 22: 1481-1490, 2002Google Scholar
  72. 72.
    Peiper M, Goedegebuure PS, Linehan DC, Ganguly E, Douville CC, Eberlein TJ: The HER2/neu-derived peptide p654-662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes. Eur J Immunol 27: 1115-1123, 1997Google Scholar
  73. 73.
    Peoples GE, Smith RC, Linehan DC, Yoshino I, Goedegebuure PS, Eberlein TJ: Shared T cell epitopes in epithelial tumors. Cell Immunol 164: 279-286, 1995Google Scholar
  74. 74.
    Perez SA, Sotiropoulou PA, Sotiriadou NN, Mamalaki A, Gritzapis AD, Echner H, Voelter W, Pawelec G, Papamichail M, Baxevanis CN: HER-2/neu-derived peptide 884-899 is expressed by human breast, colorectal and pancreatic adenocarcinomas and is recognized by in vitro-induced specific CD4(+) T cell clones. Cancer Immunol Immunother 50: 615-624, 2002Google Scholar
  75. 75.
    Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R: Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163: 1037-1044, 1999Google Scholar
  76. 76.
    Scardino A, Gross DA, Alves P, Schultze JL, Graff-Dubois S, Faure O, Tourdot S, Chouaib S, Nadler LM, Lemonnier FA, Vonderheide RH, Cardoso AA, Kosmatopoulos K: HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168: 5900-5906, 2002Google Scholar
  77. 77.
    Sotiriadou R, Perez SA, Gritzapis AD, Sotiropoulou PA, Echner H, Heinzel S, Mamalaki A, Pawelec G, Voelter W, Baxevanis CN, Papamichail M: Peptide HER2(776-788) represents a naturally processed broad MHC class II-restricted T cell epitope. Br J Cancer 85: 1527-1534, 2001Google Scholar
  78. 78.
    Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA: High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15: 3363-3367, 1997Google Scholar
  79. 79.
    Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB et al.: Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54: 16-20, 1994Google Scholar
  80. 80.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783-792, 2001Google Scholar
  81. 81.
    Shiku H, Wang L, Ikuta Y, Okugawa T, Schmitt M, Gu X, Akiyoshi K, Sunamoto J, Nakamura H: Development of a cancer vaccine: peptides, proteins, and DNA. Cancer Chemother Pharmacol 46(Suppl): S77-S82, 2000Google Scholar
  82. 82.
    Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B, Heilbrun L, Jones RF: Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 81: 748-754, 1999Google Scholar
  83. 83.
    Rovero S, Amici A, Carlo ED, Bei R, Nanni P, Quaglino E, Porcedda P, Boggio K, Smorlesi A, Lollini PL, Landuzzi L, Colombo MP, Giovarelli M, Musiani P, Forni G: DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165: 5133-5142, 2000Google Scholar
  84. 84.
    Pietersz GA, Apostolopoulos V, McKenzie IF: Generation of cellular immune responses to antigenic tumor peptides. Cell Mol Life Sci 57: 290-310, 2000Google Scholar
  85. 85.
    Jager E, Jager D, Knuth A: Strategies for the development of vaccines to treat breast cancer. Recent Results Cancer Res 152: 94-102, 1998Google Scholar
  86. 86.
    Esserman LJ, Lopez T, Montes R, Bald LN, Fendly BM, Campbell MJ: Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 47: 337-342, 1999Google Scholar
  87. 87.
    Disis ML, Cheever MA: HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv Cancer Res 71: 343-371, 1997Google Scholar
  88. 88.
    Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, Kaumaya PT: Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res 60: 3782-3789, 2000Google Scholar
  89. 89.
    Amici A, Smorlesi A, Noce G, Santoni G, Cappelletti P, Capparuccia L, Coppari R, Lucciarini R, Petrelli C, Provinciali M: DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther 7: 703-706, 2000Google Scholar
  90. 90.
    Amici A, Venanzi FM, Concetti A: Genetic immunization against neu/erbB2 transgenic breast cancer. Cancer Immunol Immunother 47: 183-190, 1998Google Scholar
  91. 91.
    Chen SA, Tsai MH, Wu FT, Hsiang A, Chen YL, Lei HY, Tzai TS, Leung HW, Jin YT, Hsieh CL, Hwang LH, Lai MD: Induction of antitumor immunity with combination of HER2/neu DNA vaccine and interleukin 2 genemodified tumor vaccine. Clin Cancer Res 6: 4381-4388, 2000Google Scholar
  92. 92.
    Mittelman A, Lucchese A, Sinha AA, Kanduc D: Monoclonal and polyclonal humoral immune response to EC HER-2/NEU peptides with low similarity to the host's proteome. Int J Cancer 98: 741-747, 2002Google Scholar
  93. 93.
    Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N, Chien KR, Birchmeier C, Garratt AN: Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 99: 8880-8885, 2002Google Scholar
  94. 94.
    Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross Jr J, Chien KR, Lee KF: ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8: 459-465, 2002Google Scholar
  95. 95.
    Tait BD: HLA class I expression on human cancer cells. Implications for effective immunotherapy. Hum Immunol 61: 158-165, 2000Google Scholar
  96. 96.
    Liljestrom P, Garoff H: A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY) 9: 1356-1361, 1991Google Scholar
  97. 97.
    Allsopp TE, Scallan MF, Williams A, Fazakerley JK: Virus infection induces neuronal apoptosis: a comparison with trophic factor withdrawal. Cell Death Differ 5: 50-59, 1998Google Scholar
  98. 98.
    Fazakerley JK, Allsopp TE: Programmed cell death in virus infections of the nervous system. Curr Top Microbiol Immunol 253: 95-119, 2001Google Scholar
  99. 99.
    Glasgow GM, McGee MM, Sheahan BJ, Atkins GJ: Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78: 1559-1563, 1997Google Scholar
  100. 100.
    Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner C, Michel MR: Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. Embo J 17: 1268-1278, 1998Google Scholar
  101. 101.
    Griffin DE: The Gordon Wilson lecture: unique interactions between viruses, neurons and the immune system. Trans Am Clin Climatol Assoc 107: 89-98, 1995Google Scholar
  102. 102.
    Hardy PA, Mazzini MJ, Schweitzer C, Lundstrom K, Glode LM: Recombinant Semliki forest virus infects and kills human prostate cancer cell lines and prostatic duct epithelial cells ex vivo. Int J Mol Med 5: 241-245, 2000Google Scholar
  103. 103.
    Jackson AC, Rossiter JP: Apoptotic cell death is an important cause of neuronal injury in experimental Venezuelan equine encephalitis virus infection of mice. Acta Neuropathol (Berl) 93: 349-353, 1997Google Scholar
  104. 104.
    Jan JT, Griffin DE: Induction of apoptosis by Sindbis virus occurs at cell entry and does not require virus replication. J Virol 73: 10296-10302, 1999Google Scholar
  105. 105.
    Jan JT, Chatterjee S, Griffin DE: Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74: 6425-6432, 2000Google Scholar
  106. 106.
    Karpf AR, Brown DT: Comparison of Sindbis virus-induced pathology in mosquito and vertebrate cell cultures. Virology 240: 193-201, 1998Google Scholar
  107. 107.
    Lundstrom K: Alphavirus vectors for gene therapy applications. Curr Gene Ther 1: 19-29, 2001Google Scholar
  108. 108.
    Mastrangelo AJ, Zou S, Hardwick JM, Betenbaugh MJ: Antiapoptosis chemicals prolong productive lifetimes of mammalian cells upon Sindbis virus vector infection. Biotechnol Bioeng 65: 298-305, 1999Google Scholar
  109. 109.
    Murphy AM, Morris-Downes MM, Sheahan BJ, Atkins GJ: Inhibition of human lung carcinoma cell growth by apoptosis induction using Semliki Forest virus recombinant particles. Gene Ther 7: 1477-1482, 2000Google Scholar
  110. 110.
    Murphy AM, Sheahan BJ, Atkins GJ: Induction of apoptosis in BCL-2-expressing rat prostate cancer cells using the Semliki Forest virus vector. Int J Cancer 94: 572-578, 2001Google Scholar
  111. 111.
    Nargi-Aizenman JL, Griffin DE: Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-D-aspartate receptor antagonists. J Virol 75: 7114-7121, 2001Google Scholar
  112. 112.
    Nava VE, Rosen A, Veliuona MA, Clem RJ, Levine B, Hardwick JM: Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 72: 452-459, 1998Google Scholar
  113. 113.
    Rosen A, Casciola-Rosen L, Ahearn J: Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med 181: 1557-1561, 1995Google Scholar
  114. 114.
    Zrachia A, Dobroslav M, Blass M, Kazimirsky G, Kronfeld I, Blumberg PM, Kobiler D, Lustig S, Brodie C: Infection of glioma cells with Sindbis virus induces selective activation and tyrosine phosphorylation of protein kinase C delta. Implications for Sindbis virus-induced apoptosis. J Biol Chem 277: 23693-23701, 2002Google Scholar
  115. 115.
    Gardner JP, Donovan G, Morrissey D, Caley I, Durso RJ, Cohen M, Arrigale RR, Zhan C, Israel RJ, WC O: A novel alphavirus replicon vaccine encoding PSMA for immunotherapy of prostate cancer. In: 93rd Annual Meeting, American Association for Cancer Research, San Francisco, CA, 2002, pp 3017Google Scholar
  116. 116.
    Donovan GP, Gardner JP, Morrissey DM, Schulke N, Zhan C, Durso RJ, Arrigale RR, Varlamova O, Scalzo TM, Chodera AJ, Heston WD, WC O: Clinical development of immunotherapies targeting prostate specific membrane antigen (PSMA). In: Thirty-eighth Annual Meeting American Society of Clinical Oncology, Orlando, FL, 2002, pp 25Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Edward L. Nelson
    • 1
  • Darue Prieto
    • 2
  • Terri G. Alexander
    • 1
  • Peter Pushko
    • 3
  • Loreen A. Lofts
    • 3
  • Jonathan O. Rayner
    • 4
  • Kurt I. Kamrud
    • 4
  • Bolyn Fralish
    • 4
  • Jonathan F. Smith
    • 4
  1. 1.Department of Medicine, Division of Hematology/OncologyUniversity of CaliforniaIrvineUSA
  2. 2.SAIC-Frederick, NCI-FCRCUSA
  3. 3.USAMRIID, Fort DetrickFrederickUSA
  4. 4.AlphaVax, Inc.Research Triangle ParkUSA

Personalised recommendations