Brain Topography

, Volume 16, Issue 2, pp 95–99 | Cite as

Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation

  • Uwe Herwig
  • Peyman Satrapi
  • Carlos Schönfeldt-Lecuona


Background: The International 10-20 system for EEG electrode placement is increasingly applied for the positioning of transcranial magnetic stimulation (TMS) in cognitive neuroscience and in psychiatric treatment studies. The crucial issue in TMS studies remains the reliable positioning of the coil above the skull for targeting a desired cortex region. In order to asses the precision of the 10-20 system for this purpose, we tested its projections onto the underlying cortex by using neuronavigation. Methods: In 21 subjects, the 10-20 positions F3, F4, T3, TP3, and P3, as determined by a 10-20 positioning cap, were targeted stereotactically. The corresponding individual anatomical sites were identified in the Talairach atlas. Results: The main targeted regions were: for F3 Brodmann areas (BA) 8/9 within the dorsolateral prefrontal cortex, for T3 BA 22/42 on the superior temporal gyrus, for TP3 BA 40/39 in the area of the supramarginal and angular gyrus, and for P3 BA 7/40 on the inferior parietal lobe. However, in about 10% of the measurements adjacent and possibly functionally distinct BAs were reached. The ranges were mainly below 20 mm. Conclusion: Using the 10-20 system for TMS positioning is applicable at low cost and may reach desired cortex regions reliably on a larger scale level. For finer grained positioning, possible interindividual differences, and therefore the application of neuroimaging based methods, are to be considered.

International 10-20 EEG system Cortex anatomy Stereotaxic neuronavigation Transcranial magnetic stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, G.H., Kormos, D.W., Steiner, C.P. and Morris, H. Registration of EEG electrodes with three-dimensional neuroimaging using a frameless, armless stereotactic wand. Stereotact. Funct. Neurosurg., 1993, 61(1): 32-38.Google Scholar
  2. Gerloff, C., Corwell, B., Chen, R., Hallett, M. and Cohen, L.G. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 1997, 120(Pt 9): 1587-1602.Google Scholar
  3. Haan, H., Streb, J., Bien, S. and Rösler, F. Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm). Human Brain Mapping, 2000, 11: 178-192.Google Scholar
  4. Herwig, U., Padberg, F., Unger, J., Spitzer, M. and Schönfeldt-Lecuona, C. Transcranial magnetic stimulation in therapy studies: examination of the reliability of coil positioning by neuronavigation. Biol. Psychiatry, 2001, 50(1): 58-61.Google Scholar
  5. Herwig, U., Schönfeldt-Lecuona, C., Wunderlich, A.P., von Tiesenhausen, C., Thielscher, A., Walter, H. and Spitzer, M. The navigation of transcranial magnetic stimulation. Psychiatry Res: Neuroimaging, 2001, 108(2): 123-131.Google Scholar
  6. Herwig, U., Schönfeldt-Lecuona, C., Wunderlich, A.P., Kölbel, K., Thielscher, A., von Tiesenhausen, C. and Spitzer, M. Spatial correspondence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clinical Neurophysiology, 2002, 113(4): 42-48.Google Scholar
  7. Hoffman, R.E., Boutros, N.N., Hu, S., Berman, R.M., Krystal, J.H. and Charney, D.S. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet, 2000, 25, 355(9209): 1073-1075.Google Scholar
  8. Homan, R.W., Herman, J. and Purdy, P. Cerebral location of international 10-20 system electrode placement. Electroencephalogr. Clin. Neurophysiol., 1987, 66(4): 376-382.Google Scholar
  9. Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol., 1958, 10: 370-375.Google Scholar
  10. Kessels, R.P., d'Alfonso, A.A., Postma, A. and de Haan, E.H. Spatial working memory performance after high-frequency repetitive transcranial magnetic stimulation of the left and right posterior parietal cortex in humans. Neurosci. Lett., 2000, 287(1): 68-70.Google Scholar
  11. Kiefer, M. The N400 is modulated by unconsciously perceived masked words: Further evidence for an automatic spreading activation account of N400 priming effects. Cognitive Brain Research, 2002, 13: 27-39.Google Scholar
  12. Lagerlund, T.D., Sharbrough, F.W., Jack, C.R.Jr., Erickson, B.J., Strelow, D.C., Cicora, K.M. and Busacker, N.E. Determination of 10-20 system electrode locations using magnetic resonance image scanning with markers. Electroencephalogr. Clin. Neurophysiol., 2000, 86(1): 7-14.Google Scholar
  13. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Feidler, J., Smith, K., Boomsma, D., Hulshoff Pol, H., Cannon, T., Kawashima, R. and Mazoyer, B. A four-dimensional probabilistic atlas of the human brain. J. Am. Med. Inform. Assoc., 2001, 8(5): 401-430.Google Scholar
  14. Muri, R.M., Buhler, R., Heinemann, D., Mosimann, U.P., Felblinger, J., Schlaepfer, T.E. and Hess, C.W. Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Exp. Brain Res., 2002, 143(4): 426-430.Google Scholar
  15. Rossi, S., Cappa, S.F., Babiloni, C., Pasqualetti, P., Miniussi, C., Carducci, F., Babiloni, F. and Rossini, P.M. Prefontal cortex in long-term memory: an approach using magnetic stimulation. Nat. Neurosci., 2001, 4(9): 948-952.Google Scholar
  16. Roth, B.J., Cohen, L.G., Hallett, M., Friauf, W. and Basser, P.J. A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve. Muscle Nerve, 1990, 13: 734-741.Google Scholar
  17. Ruchsow, M., Grothe, J., Spitzer, M. and Kiefer, M. Human anterior cingulate cortex is activated by negative feedback: Evidence from event-related potentials in a guessing task. Neuroscience Letters, 2002, 325: 203-206.Google Scholar
  18. Steinmetz, H., Furst, G. and Meyer, B.U. Craniocerebral topography within the international 10-20 system. Electroencephalogr. Clin. Neurophysiol., 1993, 72(6): 499-506.Google Scholar
  19. Talairach, J. and Tournoux, P. Co-planar stereotaxic atlas of the human brain. NewYork: Thieme Medical Publishers 1988.Google Scholar
  20. Towle, V.L., Bolanos, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D.N., Cakmur, R., Frank, S.A. and Spire, J.P. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol., 1993, 86(1): 1-6.Google Scholar
  21. Walsh, V. and Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci., 2000, 1: 73-79.Google Scholar
  22. Wassermann, E.M., Lisanby, S.H. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin. Neurophysiol., 2001, 112(8): 1367-1377.Google Scholar

Copyright information

© Human Sciences Press, Inc. 2003

Authors and Affiliations

  • Uwe Herwig
  • Peyman Satrapi
  • Carlos Schönfeldt-Lecuona

There are no affiliations available

Personalised recommendations