Boundary-Layer Meteorology

, Volume 113, Issue 2, pp 201–224 | Cite as

The Influence of Advection on the Short Term CO2-Budget in and Above a Forest Canopy

Abstract

An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m−2 d−1 for the horizontal advection and a mean daily loss of 2.5 gC m−2d−1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.

Advection Carbon sequestration CO2 Forest ecosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubinet, M., Chermanne, B., Vandenhaude, M., Longdoz, B., Yernaux, M., and Laitat, E.: 2001,’, Agric. For. Meteorol. 108, 293-315.Google Scholar
  2. Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: 2000, ‘Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology’, Adv. Ecol. Res. 30, 113-175.Google Scholar
  3. Aubinet, M., Heinesch, B., and Yernaux, M.: 2003, ‘Horizontal and Vertical CO2 Advection in a Sloping Forest’, Boundary-Layer Meteorol. 108, 397-417.Google Scholar
  4. Baldocchi, D., Finnigan, J. J., Wilson, K., Paw U, K. T., and Falge, E.: 2000, ‘On Measuring Net Ecosystem Exchange over Tall Vegetation on Complex Terrain’, Boundary-Layer Meteorol. 96, 257-291.Google Scholar
  5. Baldocchi, D., Vogel, C., and Hall, B.: 1997, ‘Seasonal Variation of Carbon Dioxide Exchange Rates above and below a Boreal Jack Pine Forest’, Agric. For. Meteorol. 83, 147-170.Google Scholar
  6. Bernhofer, C. and Vogt, R.: 1999, ‘Energy Balance Closure Gaps-A Methodical Problem of Eddy Covariance Measurements?’, in R. J. Dear, J. D. Kalma, T. R. Oke, and A. Auliciems (eds.), Biometeorology and Urban Climatology at the Turn of the Millennium: Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8-12. November 1999), pp. 199-203.Google Scholar
  7. Bernhofer, C., Feigenwinter, C., Grünwald, T., and Vogt, R.: 2003a, ‘Spectral Correction of Water and Carbon Flux for EC Measurements at the Anchor Station Tharandt’, in C. Bernhofer (ed.), Tharandter Klimaprotokolle, Vol. 8, Dresden University of Technology, Dresden, pp. 1-13.Google Scholar
  8. Bernhofer, C., Aubinet, M., Clement, R., Grelle, A., Grünwald, T., Ibrom, A., Jarvis, P., Rebmann, C., Schulze, E.-D., and Tenhunen, J. D.: 2003b, ‘Spruce Forests (Norway and Sitka Spruce, Including Douglas Fir): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants’, in R. Valentini, (ed.), Fluxes of Carbon, Water and Energy of European Forests, Ecological Studies, Vol. 163, Springer, Berlin, pp. 99-123.Google Scholar
  9. Dolman, A. J., Moors, E. J., and Elbers, J. A.: 2002, ‘The Carbon Uptake of a Mid Latitude Pine Forest Growing on Sandy Soil’, Agric. For. Meteorol. 111, 157-170.Google Scholar
  10. Eugster, W. and Siegrist, F.: 2000, ‘The Influence of Nocturnal CO2 Advection on CO2 Flux Measurements’, Basic Appl. Ecol. 1, 177-188.Google Scholar
  11. Falge, E., Baldocchi, D. D., Olson, R. J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, T., Dolman, H., Granier, A., Gross, P., Grünwald, T., Meyers, B. E., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Tebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: 2001a, ‘Gap Filling Strategies for Defensible Annual Sums of Net Ecosystem Exchange’, Agric. For. Meteorol. 107, 43-69.Google Scholar
  12. Falge, E., Baldocchi, D. D., Olson, R. J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, T., Dolman, H., Granier, A., Gross, P., Grünwald, T., Meyers, B. E., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Tebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: 2001b, ‘Gap Filling Strategies for Longterm Energy Flux Data Sets’, Agric. For. Meteorol. 107, 71-77.Google Scholar
  13. Finnigan, J. J.: 1999, ‘A Comment on the Paper by Lee (1998): “On Micrometeorological Observations of Surface-Air Exchange over Tall Vegetation”’, Agric. For. Meteorol. 97, 55-64.Google Scholar
  14. Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A.: 2003, ‘A Re-evaluation of Long-term Flux Measurement Techniques. Part I: Averaging'' and Coordinate Rotation’, Boundary-Layer Meteorol. 107, 1-48.Google Scholar
  15. Goulden, M. L., Munger, J. W., Fal, S.-M., Daube, B. C., and Wofsy, S. C.: 1996, ‘Measurements of Carbon Sequestration by Long-Term Eddy Covariance: Methods and a Critical Evaluation of Accuracy’, Global Change Biol. 2, 183-197.Google Scholar
  16. Grünwald, T.: 2002, Langfristige Beobachtungen von Kohlendioxidflüssen mittels Eddy-Kovarianz-Techniküber einem Altfichtenbestand im Tharandter Wald, Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 141 pp.Google Scholar
  17. Grünwald, T. and Bernhofer, C.: 2000, ‘Data Gap Filling with Regression Modelling’, in R. J. M. Ceulemans, F. Veroustraete, V. Gond, and J. B. H. F. Van Rensbergen (eds.), Forest Ecosystem Modelling, Upscaling and Remote Sensing, SPB Academic Publishing, The Hague, Netherlands, pp. 61-67.Google Scholar
  18. Joss, U.: 1996, ‘Mikrometeorologie, Profile und Flüsse von CO2, H2O und O3 in zwei mitteleuropäischen Nadelwäldern’, in E. Parlow (ed.), Stratus, Vol. 4, Department of Geography, University of Basel, Switzerland, 100 pp.Google Scholar
  19. Lee, X.: 1998, ‘On Micrometeorological Observations of Surface-Air Exchange over Tall Vegetation’, Agric. For. Meteorol. 91, 39-49.Google Scholar
  20. Lee, X. and Hu, X.: 2002, ‘Forest-air Fluxes of Carbon, Water and Energy over Non-Flat Terrain’, Boundary-Layer Meteorol. 102, 277-301.Google Scholar
  21. Leuning, R. and Moncrieff, J.: 1990, ‘Eddy Covariance CO2 Flux Measurements Using Openand Closed-Path CO2 Analysers: Corrections for Analyser Watervapour Sensitivity and Damping of Fluctuations in Air Sampling Tubes’, Boundary-Layer Meteorol. 53, 63-76.Google Scholar
  22. Massmann, W. and Lee, X.: 2002, ‘Eddy Covariance Flux Corrections and Uncertainties in Long-Term Studies of Carbon and Energy Exchanges’, Agric. For. Meteorol. 113, 121-144.Google Scholar
  23. Moncrieff, J., Massheder, J., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: 1997, ‘A System to Measure Surface Fluxes of Momentum, Sensible Heat, Water Vapour and Carbon dioxide’, J. Hydrol. 188–89, 589-611.Google Scholar
  24. Panofsky, H.A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley & Sons, New York, 397 pp.Google Scholar
  25. Paw U, K. T., Baldocchi, D., Meyers, T.P., and Wilson, K. B.: 2000, ‘Correction of Eddy-Covariance Measurement Incorporating Both Advective Effects and Density Fluxes’, Boundary-Layer Meteorol. 97, 487-511.Google Scholar
  26. Raupach, M.R. and Thom, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Annu. Rev. Fluid Mech. 13, 97-129.Google Scholar
  27. Saigusa, N., Yamamoto, S., Murayama, S., Kondo, H., and Nishimura, N.: 2002, ‘Gross Primary Production and Net Ecosystem Exchange of a Cool-Temperate Deciduous Forest Estimated by the Eddy Covariance Method, Agric. For. Meteorol. 112, 203-215.Google Scholar
  28. Valentini, R., de Angelis, P., Matteucci, G., Monaco, R., Dore, S., and Scarascia Mignozza, G. E.: 1996, ‘Seasonal Net Carbon Dioxide Exchange of a Beech Forest with the Atmosphere’, Global Change Biol. 2, 199-207.Google Scholar
  29. Valentini, R., Matteucci, G., Dolman, H., Schultze, E.-D., Rebmann, C., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grünwald, T., Aubinet, M., Ceulemans, R., Kowalsky, A. S., Vesala, T., Rannik, U., Berbigier, P., Lousteau, D., Guomundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S., and Jarvis, P.G.: 2000, ‘Respiration as the Main Determinant of Carbon Balance in European Forests’, Nature 404, 861-865.Google Scholar
  30. Wilczak, J. M., Oncley, S. P., and Stage, S. A.: 2001, ‘Sonic Anemometer Tilt Correction Algorithms’, Boundary-Layer Meteorol. 99, 127-150.Google Scholar
  31. Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: 1993, ‘Net Exchange of CO2 in a Mid-Latitude Forest’, Science 260, 1314-1317.Google Scholar
  32. Xu, L.-K., Matista, A. A., and Hsiao, T. C.: 1999, ‘A Technique for Measuring CO2 and Water Vapour Profiles within and above Plant Canopies over Short Periods’, Agric. For. Meteorol. 94, 1-12.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute of Meteorology, Climatology and Remote SensingUniversity of BaselSwitzerland
  2. 2.Institute of Hydrology and MeteorologyDresden University of TechnologyGermany
  3. 3.Institute of Meteorology, Climatology and Remote SensingUniversity of BaselSwitzerland

Personalised recommendations