Boundary-Layer Meteorology

, Volume 113, Issue 2, pp 249–271 | Cite as

A Comparison Of Aerosol-Layer And Convective Boundary-Layer Structure Over A Mountain Range During Staaarte '97

Article

Abstract

The temporal evolution and spatial structure of the aerosol layer (AL) height as observed with an airborne downlooking lidar over the Swiss Alps were investigated with a three-dimensional mesoscale numerical model and a particle dispersion model. Convective boundary-layer (CBL) heights were derived from the mesoscale model output, and the behaviour of surface-released particles was investigated with the particle dispersion model. While a previous investigation, using data from the same field study, equated the observed AL height with the CBL height, the results of the current investigation indicate that there is a considerable difference between AL and CBL heights caused by mixing and transport processes between the CBL and the free atmosphere. CBL heights show a more terrain-following behaviour and are lower than AL heights. We argue that processes causing the difference between AL and CBL heights are common over mountainous terrain and that the AL height is a length scale that needs to be considered in air pollution studies in mountainous terrain.

Aerosol layer Boundary-layer height Convective boundary layer Lidar Mountainous terrain Numerical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braham, R. R. and Draginis, M.: 1960, ‘Roots of Orographic Cumuli’, J. Meteorol. 17, 214-224.Google Scholar
  2. Ching, J. K. S., Shipley, S. T., and Browell, E. V.: 1988, “Evidence for Cloud Venting of Mixed Layer Ozone and Aerosols”, Atmos. Environ. 22, 225-242.Google Scholar
  3. Cotton, W. R., Pielke, Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: 2003, ‘RAMS 2001: Current Status and Future Directions’, Meteorol. Atmos. Phys. 82, 5-29.Google Scholar
  4. Coulter, R. L.: 1979, ‘A Comparison of Three Methods for Measuring Mixing-Layer Height’, J. Appl. Meteorol. 8, 1495-1499.Google Scholar
  5. Cramer, O. P.: 1972, ‘Potential Temperature Analysis for Mountainous Terrain’, J. Appl. Meteorol. 11, 44-50.Google Scholar
  6. Cramer, O. P. and Lynott, R. E.: 1961, ‘Cross-section Analysis in the Study of Windflow over Mountainous Terrain’, Bull. Am. Meteorol. Soc. 42, 693-702.Google Scholar
  7. Dayan, U., Shenhav, R., and Graber, M.: 1988, ‘The Spatial and Temporal Behavior of the Mixed Layer in Israel’, J. Appl. Meteorol. 27, 1382-1394.Google Scholar
  8. Deardorff, J. W., Willis, G. E., and Stockton, B. H.: 1980, ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’, J. Fluid Mech. 100, 41-64.Google Scholar
  9. De Wekker, S. F. J.: 2002, Structure and Morphology of the Convective Boundary Layer in Mountainous Terrain, Ph.D. Dissertation, The University of British Columbia, BC, Canada, 191 pp.Google Scholar
  10. De Wekker, S. F. J., Kossmann, M., and Fiedler, F.: 1997, ‘Observations of Daytime Mixed Layer Heights over Mountainous Terrain during the TRACT Field Campaign’, in Proceedings of the 12th AMS Symposium on Boundary Layers and Turbulence, Vancouver, BC, Canada, American Meteorological Society, 45 Beacon Street, Boston, MA, pp. 498-499.Google Scholar
  11. Fast, J. D. and Zhong, S.: 1998, ‘Meteorological Factors Associated with Inhomogeneous Ozone Concentrations within the Mexico City Basin’, J. Geophys. Res. 103, 18927-18946.Google Scholar
  12. Fiedler, F.: 1983, Einige Charakteristika der Strömung im Oberrheingraben, Wissenschaftliche Berichte des Meteorologischen Instituts der Universitä t Karlsruhe, Vol. 4, pp. 113-123.Google Scholar
  13. Fiedler, F., Bischoff-Gauss, I., Kalthoff, N., and Adrian, G.: 2000, ‘Modeling of the Transport of a Tracer in the Freiburg-Schauinsland Area’, J. Geophys. Res. D 105, 1599-1610.Google Scholar
  14. Hänel, G.: 1976, ‘The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air’, Adv. Geophys. 19, 73-188.Google Scholar
  15. Holzworth, G. C.: 1964, ‘Estimates of Mean Maximum Mixing Depths in the Contiguous U.S.’, Mon. Wea. Rev. 92, 235-242.Google Scholar
  16. Kiemle, C., Kästner, M., and Ehret, G.: 1995, ‘The Convective Boundary Layer Structure from Lidar and Radiosonde Measurements during the EFEDA'91 Campaign’, J. Atmos. Ocean. Tech. 12, 771-782.Google Scholar
  17. Kossmann, M., Corsmeier, U., De Wekker, S. F. J., Fiedler, F., Vögtlin, R., Kalthoff, N., Güsten, H., and Neininger, B.: 1999, ‘Observations of Handover Processes between the Atmospheric Boundary Layer and the Free Troposphere over Mountainous Terrain’, Contr. Atmos. Phys. 72, 329-350.Google Scholar
  18. Kossmann, M., Vögtlin, R., Corsmeier, U., Vogel, B., Fiedler, F., Binder, H.-J., Kalthoff, N., and Beyrich, F.: 1998, ‘Aspects of the Convective Boundary Layer Structure over Complex Terrain’, Atmos. Environ. 32, 1323-1348.Google Scholar
  19. Lagouvardos, K., Kotroni, V., and Kallos, G.: 1996, ‘Exploring the Effects of Different Types of Model Initialisation: Simulation of a Severe Air-Pollution Episode in Athens, Greece’, Meteorol. Appl. 3, 147-155.Google Scholar
  20. Lenschow, D. H., Stankov, B. B., and Mahrt, L.: 1979, ‘The Rapid Morning Boundary-Layer Transition’, J. Atmos. Sci. 36, 2108-2124.Google Scholar
  21. Lu, R. and Turco, R. P.: 1994, ‘Air Pollutant Transport in a Coastal Environment. Part 1: Two Dimensional Simulations of Sea-Breeze and Mountain Effects’, J. Atmos. Sci. 51, 2285-2308.Google Scholar
  22. Lugauer, M.: 1998, Vertical Transport of Atmospheric Trace Species in the Alps, Ph.D. Dissertation, University of Bern, Switzerland, 91 pp.Google Scholar
  23. Lyons, W. A., Pielke, R. A., Cotton, W. R., Tremback, C. J., Walko, R. L., Uliasz, M., and Ibarra, J. I.: 1994, ‘Recent Applications of the RAMS Meteorological and the HYPACT Dispersion Models’, in S.-E. Gryning and M. M. Millan (eds.), Proceedings of the 20th ITM of NATO/CCMS on Air Pollution Modeling and its Application. Plenum Press, New York, pp. 19-26.Google Scholar
  24. Marsik, F. J., Fischer, K. W., McDonald, T. D., and Samson, P. J.: 1995, ‘Comparison of Methods for Estimating Mixing Height Used during the 1992 Atlanta Field Intensive’, J. Appl. Meteorol. 34, 1802-1814.Google Scholar
  25. McKendry, I. G. and Lundgren, J.: 2000, ‘Tropospheric Layering of Ozone in Regions of Urbanized Complex and/or Coastal Terrain: A Review’, Progr. Phys. Geog. 24, 329-354.Google Scholar
  26. McKendry, I. G., Steyn, D. G., Lundgren, J., Hoff, R. M., Strapp, W., Anlauf, K., Froude, F., Martin, B. A., Banta, R. M., and Olivier, L. D.: 1997, ‘Elevated Pollution Layers and Vertical Downmixing over the Lower Fraser Valley, B. C.’, Atmos. Environ. 31, 2135-2146.Google Scholar
  27. Nyeki, S., Kalberer, M., Colbeck, I., De Wekker, S. F. J., Furger, M., Gäggeler, H. W., Kossmann, M., Lugauer, M., Steyn, D., Weingartner, E., Wirth, M., and Baltensperger, U.: 2000, ‘Convective Boundary Layer Evolution to 4 km asl over High-Alpine Terrain: Airborne Lidar Observations in the Alps’, Geophys. Res. Lett. 27, 689-692.Google Scholar
  28. Pielke, R. A.: 2002, Mesoscale Meteorological Modeling, 2nd edn., Academic Press, San Diego, CA, 676 pp.Google Scholar
  29. Raymond, D. and Wilkening, M.: 1980, ‘Mountain Induced Convection under Fair Weather Conditions’, J. Atmos. Sci. 37, 2693-2706.Google Scholar
  30. Schwiesow, R. L., 1984, ‘Lidar Measurements of Boundary-Layer Variables’, in D. H. Lenschow (ed.), Probing the Atmospheric Boundary Layer, Amer. Meteorol. Soc., pp. 139-162.Google Scholar
  31. Seibert, P., Beyrich, F., Gryning, S.E., Joffre, S., Rasmussen, A., and Tercier, P.: 2000, ‘Review and Intercomparison of Operational Methods for the Determination of the Mixing Height’, Atmos. Environ. 34, 1001-1027.Google Scholar
  32. Sullivan, P. P., Moeng, C-H., Stevens, B., Lenschow, D. H., and Mayor, S. D.: 1998, ‘Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary-Layer’, J. Atmos. Sci. 55, 3042-3064.Google Scholar
  33. Troen, I. and Mahrt, L.: 1986, ‘A Simple Model of the Atmospheric Boundary-Layer: Sensitivity to Surface Evaporation’, Boundary-Layer Meteorol. 37, 129-148.Google Scholar
  34. Van Pul, W. A. J., Holtslag, A. A. M., and Swart, D. P. J.: 1994, ‘A Comparison of ABLheights Inferred Routinely from Lidar and Radiosondes at Noontime’, Boundary-Layer Meteorol. 68, 173-191.Google Scholar
  35. Vogelezang, D. H. P. and Holtslag, A. A. M.: 1996, ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’, Boundary-Layer Meteorol. 81, 245-269.Google Scholar
  36. Walko,R.L.,Tremback,C.J.,and Bell,M.J.:2001,HYPACT.Hybrid Particle and Concentration Transport Model.User's Guide ,35 pp. [Available from ASTER Division, Mission Research Corporation, P. O. Box 466, Fort Collins, CO 80525-0466].Google Scholar
  37. Whiteman, C. D.: 1990, ‘Observations of Thermally Developed Wind Systems in Mountainous Terrain’, in W. Blumen (ed.), Atmospheric Processes over Complex Terrain, Meteorol. Monogr., 23 (no. 45), Amer. Meteorol. Soc., Boston, MA, pp. 5-42.Google Scholar
  38. WMO (World Meteorological Organization): 1993, Handbook of Meteorological Forecasting for Soaring Flights, 2nd edn., Technical Note No. 158, WMO No. 495, Geneva, Switzerland, 84 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. F. J. De Wekker
    • 1
    • 2
    • 3
  • D. G. Steyn
    • 1
  • S. Nyeki
    • 2
    • 4
  1. 1.The University of British ColumbiaCanada
  2. 2.Paul Scherrer InstituteSwitzerland
  3. 3.Pacific Northwest National LaboratoryRichlandU.S.A.
  4. 4.University of EssexColchesterU.K

Personalised recommendations