Boundary-Layer Meteorology

, Volume 113, Issue 1, pp 81–109 | Cite as

ONE- and TWO-Equation Models for Canopy Turbulence

  • Gabriel G. Katul
  • Larry Mahrt
  • Davide Poggi
  • Christophe Sanz
Canopy turbulence Closure models K-epsilon models Two-equation models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, J. D., Katul, G. G., and Wiberg, P.: 2001, 'Relative Importance of Local and Regional Controls on Coupled Water, Carbon, and Energy Fluxes', Adv. Water Resour. 24, 1103–1118.CrossRefGoogle Scholar
  2. Amiro, B. D.: 1990, 'Comparison of Turbulence Statistics within 3 Boreal Forest Canopies', Boundary-Layer Meteorol. 51, 99–121.Google Scholar
  3. Ayotte, K. W., Finnigan, J. J., and Raupach, M. R.: 1999, 'A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows', Boundary-Layer Meteorol. 90, 189–216.CrossRefGoogle Scholar
  4. Baldocchi, D. D.: 1989, 'Turbulent Transfer in a Deciduous Forest', Tree Phys. 5, 357–377.Google Scholar
  5. Baldocchi, D. D. and Meyers, T. D.: 1988, 'A Spectral and Lag-Correlation Analysis of Turbulence in a Deciduous Forest Canopy', Boundary-Layer Meteorol. 45, 31–58.Google Scholar
  6. Bradshaw, P., Launder, B. E., and Lumley, J. L.: 1991, 'Collaborative Testing of Turbulence Models', J. Fluids Engr.-Trans. ASME 113, 3–4.Google Scholar
  7. Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Boston, 299 pp.Google Scholar
  8. Castro F. A., Palma, J. M., and Lopes, A. S.: 2003, 'Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier-Stokes Equations (K-Epsilon Turbulence Model)', Boundary-Layer Meteorol. 107, 501–530.CrossRefGoogle Scholar
  9. Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519–571.CrossRefGoogle Scholar
  10. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, U.K., 316 pp.Google Scholar
  11. Green, S.: 1992, 'Modelling Turbulent Air Flow in a Stand of Widely Spaced Trees', J. Comp. Fluid Dyn. Appl. 5, 294–312.Google Scholar
  12. Horn, H. S., Nathan, R., and Kaplan, S. R.: 2001, 'Long-Distance Dispersal of Tree Seeds by Wind', Ecol. Res. 16, 877–885.CrossRefGoogle Scholar
  13. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp.Google Scholar
  14. Katul, G. G. and Albertson, J. D.: 1998, 'An Investigation of Higher-Order Closure Models for a Forested Canopy', Boundary-Layer Meteorol. 89, 47–74.CrossRefGoogle Scholar
  15. Katul, G. G. and Albertson, J. D.: 1999, 'Modeling CO2 Sources, Sinks, and Fluxes within a Forest Canopy', J. Geophys. Res. (Atmospheres) 104, 6081–6091.CrossRefGoogle Scholar
  16. Katul, G. G. and Chang, W. H.: 1999, 'Principal Length Scales in Second-Order Closure Models for Canopy Turbulence', J. Appl. Meteorol. 38, 1631–1643.CrossRefGoogle Scholar
  17. Katul, G. G., Geron, C. D., Hsieh, C. I., Vidakovic, B., and Guenther, A. B.: 1998, 'Active Turbulence and Scalar Transport near the Forest-Atmosphere Interface', J. Appl. Meteorol. 37, 1533–1546.CrossRefGoogle Scholar
  18. Katul, G. G., Lai, C. T., Schafer, K., Vidakovic, B., Albertson, J. D., Ellsworth, D., and Oren, R.: 2001a, 'Multiscale Analysis of Vegetation Surface Fluxes: from Seconds to Years', Adv. Water Resour. 24, 1119–1132.CrossRefGoogle Scholar
  19. Katul, G. G., Leuning, R., Kim, J., Denmead, O. T., Miyata, A., and Harazono, Y.: 2001b, 'Estimating CO2 Source/Sink Distributions within a Rice Canopy Using Higher-Order Closure Model', Boundary-Layer Meteorol. 98, 103–125.CrossRefGoogle Scholar
  20. Kelliher, F. M., Lloyd, J., Arneth, A., Byers, J. N., McSeveny, T., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler, W., Bauer, G., and Schulze, E. D.: 1998, 'Evaporation from a Central Siberian Pine Forest', J. Hydrol. 205, 279–296.CrossRefGoogle Scholar
  21. Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler, W., Bauer, G., Wong, S. C., and Schulze, E. D.: 1999, 'Carbon Dioxide Efflux Density from the Floor of a Central Siberian Pine Forest', Agric. For. Meteorol. 94, 217–232.CrossRefGoogle Scholar
  22. Kobayashi, M. H., Pereira, J., and Siqueira, M.: 1994, 'Numerical Study of the Turbulent Flow over and in a Model Forest on a 2D Hill', J. Wind Eng. Ind. Aerodyn. 53, 357–374.CrossRefGoogle Scholar
  23. Lai, C. T., Katul, G. G., Butnor, J., Siqueira, M., Ellsworth, D., Maier, C., Johnsen, K., McKeand, S., and Oren, R.: 2002, 'Modelling the Limits on the Response of Net Carbon Exchange to Fertilization in a South-Eastern Pine Forest', Plant Cell Environ. 25, 1095–1119.CrossRefGoogle Scholar
  24. Lai, C. T., Katul, G. G., Ellsworth, D., and Oren, R.: 2000a, 'Modelling Vegetation-Atmosphere CO2 Exchange by a Coupled Eulerian-Langrangian Approach', Boundary-Layer Meteorol. 95, 91–122.CrossRefGoogle Scholar
  25. Lai, C. T., Katul, G. G., Oren, R., Ellsworth, D., and Schafer, K.: 2000b, 'Modeling CO2 and Water Vapor Turbulent Flux Distributions within a Forest Canopy', J. Geophys. Res. (Atmospheres) 105, 26333–26351.CrossRefGoogle Scholar
  26. Launder, B. and Spalding, D. B.: 1974, 'The Numerical Computation of Turbulent Flows', Comp. Meth. Appl. Mech. Eng. 3, 269–289.CrossRefGoogle Scholar
  27. Launder, B. E.: 1996, 'An Introduction to Single-Point Closure Methodology', in J. Lumley (ed.), Simulation and Modeling of Turbulent Flows, Oxford University Press, New York, pp. 243–311.Google Scholar
  28. Lee, X. H., Shaw, R. H., and Black, T. A.: 1994, 'Modeling the Effect of Mean Pressure-Gradient on the Mean Flow within Forests', Agric. For. Meteorol. 68, 201–212.CrossRefGoogle Scholar
  29. Leuning, R., Denmead, O. T., Miyata, A., and Kim, J.: 2000, 'Source/Sink Distributions of Heat, Water Vapour, Carbon Dioxide and Methane in a Rice Canopy Estimated Using Lagrangian Dispersion Analysis', Agric. For. Meteorol. 104, 233–249.CrossRefGoogle Scholar
  30. Li, Z. J., Miller, D. R., and Lin, J. D.: 1985, 'A First Order Closure Scheme to Describe Counter-Gradient Momentum Transport in Plant Canopies', Boundary-Layer Meteorol. 33, 77–83.Google Scholar
  31. Liu, J., Black, T. A., and Novak, M. D.: 1996, 'E-Epsilon Modeling of Turbulent Air Flow Downwind of a Model Forest Edge', Boundary-Layer Meteorol. 77, 21–44.Google Scholar
  32. Lumley, J. L.:1992, 'Some Comments on Turbulence', Phys. Fluids A (Fluid Dynamics) 4, 203–211.CrossRefGoogle Scholar
  33. Mahrt, L., Lee, X. L., Black, A., Neumann, H., and Staebler, R.: 2000, 'Nocturnal Mixing in a Forest Subcanopy', Agric. For. Meteorol. 101, 67–78.CrossRefGoogle Scholar
  34. Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407–421.CrossRefGoogle Scholar
  35. Massman, W. J. and Weil, J. C.: 1999, 'An Analytical One-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies of Arbitrary Structure', Boundary-Layer Meteorol. 91, 81–107.CrossRefGoogle Scholar
  36. Meyers, T. and Paw U, K. T.: 1986, 'Testing of a Higher-Order Closure-Model for Modeling Air-Flow within and above Plant Canopies', Boundary-Layer Meteorol. 37, 297–311.Google Scholar
  37. Meyers, T. P.: 1987, 'The Sensitivity of Modeled SO2 Fluxes and Profiles to Stomatal and Boundary-Layer Resistances', Water Air Soil Poll. 35, 261–278.CrossRefGoogle Scholar
  38. Meyers, T. P. and Baldocchi, D. D.: 1991, 'The Budgets of Turbulent Kinetic-Energy and Reynolds Stress within and above a Deciduous Forest', Agric. For. Meteorol. 53, 207–222.CrossRefGoogle Scholar
  39. Meyers, T. P. and Paw U, K. T.: 1987, 'Modeling the Plant Canopy Micrometeorology with Higher-Order Closure Principles', Agric. For. Meteorol. 41, 143–163.CrossRefGoogle Scholar
  40. Nathan, R., Katul, G. G., Horn, H., Thomas, S., Oren, R., Avissar, R., Pacala, S., and Levin, S.: 2002, 'Mechanisms of Long-Distance Dispersal of Seeds by Wind', Nature 418, 409–413.CrossRefGoogle Scholar
  41. Parlange, M. B. and Brutsaert, W.: 1989, 'Regional Roughness of the Landes Forest and Surface Shear-Stress under Neutral Conditions', Boundary-Layer Meteorol. 48, 69–81.Google Scholar
  42. Paw U, K. T. and Meyers, T. P.: 1989, 'Investigations with a Higher-Order Canopy Turbulence Model into Mean Source-Sink Levels and Bulk Canopy Resistances', Agric. For. Meteorol. 47, 259–271.CrossRefGoogle Scholar
  43. Pinard, J. and Wilson, J. D.: 2001, 'First-and Second-Order Closure Models for Wind in a Plant Canopy', J. Appl. Meteorol. 40, 1762–1768.CrossRefGoogle Scholar
  44. Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D., and Katul, G. G.: 2004a, 'The Effect of Vegetation Density on Canopy Sublayer Turbulence', Boundary-Layer Meteorol. 111, 565–587.CrossRefGoogle Scholar
  45. Poggi, D., Katul, G. G., and Albertson, J. D.: 2004b, 'A Note on the Contribution of Dispersive Fluxes to Momentum Transfer within Canopies', Boundary-Layer Meteorol. 111, 615–621.CrossRefGoogle Scholar
  46. Pope, S. B.: 2000,Turbulent Flows, Cambridge University Press, New York, 771 pp.Google Scholar
  47. Raupach, M. R.: 1989a, 'Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies', Agric. For. Meteorol. 47, 85–108.Google Scholar
  48. Raupach, M. R.: 1989b, 'A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 115, 609–632.CrossRefGoogle Scholar
  49. Raupach, M. R.: 1991, 'Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain-Some Implications of Mixed-Layer Dynamics', Vegetatio 91, 105–120.Google Scholar
  50. Raupach, M. R.: 1994, 'Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index', Boundary-Layer Meteorol. 71, 211–216.Google Scholar
  51. Raupach, M. R. and Finnigan, J. J.: 1997, 'The Influence of Topography on Meteorological Variables and Surface-Atmosphere Interactions', J. Hydrol. 190, 182–213.CrossRefGoogle Scholar
  52. Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedures for Flow within Vegetation Canopies', Boundary-Layer Meteorol. 22, 79–90.Google Scholar
  53. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy', Boundary-Layer Meteorol. 78, 351–382.Google Scholar
  54. Raupach, M. R., Weng, S., Carruthers, D., and Hunt, J. C. R.: 1992, 'Temperature and Humidity Fields and Fluxes over Low Hills', Quart. Roy. Meteorol. Soc. 118, 191–225.CrossRefGoogle Scholar
  55. Sanz, C.: 2003, 'A Note on K-Epsilon Modelling of Vegetation Canopy Air-Flow', Boundary-Layer Meteorol. 108, 191–197.CrossRefGoogle Scholar
  56. Schulze, E. D., Lloyd, J., Kelliher, J., Wirth, C., Rebmann, C., Luhker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N., and Vygodskaya, N. N.: 1999, 'Productivity of Forests in the Eurosiberian Boreal Region and their Potential to Act as a Carbon Sink-A Synthesis', Global Change Biol. 5, 703–722.CrossRefGoogle Scholar
  57. Siqueira, M. and Katul, G. G.: 2002, 'Estimating Heat Sources and Fluxes in Thermally Stratified Canopy Flows Using Higher-Order Closure Models', Boundary-Layer Meteorol. 103, 125–142.CrossRefGoogle Scholar
  58. Speziale, C. G.: 1996, 'Modeling of Turbulent Transport Equations', in J. Lumley (ed.), Simulation and Modeling of Turbulent Flows, Oxford University Press, New York, pp. 185–242Google Scholar
  59. Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, 666 pp.Google Scholar
  60. Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, Massachusetts Institute of Technology, Boston, 300 pp.Google Scholar
  61. Warsi, Z. U. A.: 1992, Fluid Dynamics: Theoretical and Computational Approaches, CRC Press, London, 683 pp.Google Scholar
  62. Wilson, J. D.: 1988, 'A 2nd-Order Closure Model for Flow through Vegetation', Boundary-Layer Meteorol. 42, 371–392.Google Scholar
  63. Wilson, J. D., Finnigan, J. J., and Raupach, M. R.: 1998, 'A First-Order Closure for Disturbed Plant-Canopy Flows, and its Application to Winds in a Canopy on a Ridge'. Quart.J. Roy. Meteorol. Soc. 124, 705–732.CrossRefGoogle Scholar
  64. Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, 'Statistics of Atmospheric Turbulence within and above a Corn Canopy', Boundary-Layer Meteorol. 24, 495–519.Google Scholar
  65. Wilson, N. R. and Shaw, R. H.: 1977, 'A Higher Order Closure Model for Canopy Flows', J. Appl. Meteorol. 16, 1197–1205.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Gabriel G. Katul
    • 1
    • 2
  • Larry Mahrt
    • 3
  • Davide Poggi
    • 4
    • 2
    • 5
  • Christophe Sanz
    • 6
  1. 1.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA
  2. 2.Department of Civil and Environmental Engineering, Pratt School of EngineeringDuke UniversityDurhamUSA
  3. 3.College of Oceanic & Atmospheric SciencesOregon State UniversityCorvallisUSA
  4. 4.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA
  5. 5.Dipartimento di Idraulica, Trasporti ed Infrastrutture CiviliPolitecnico di TorinoTorinoItaly
  6. 6.Jouy le MoutierFrance

Personalised recommendations