Advertisement

Boundary-Layer Meteorology

, Volume 113, Issue 1, pp 43–80 | Cite as

Modelling Fluxes and Concentrations of CO 2 , H 2 O and Sensible Heat Within and Above a Mountain Meadow Canopy: A Comparison of Three Lagrangian Models and Three Parameterisation Options for the Lagrangian Time Scale

  • Georg Wohlfahrt
Article

Abstract

Two simple analytical Lagrangian and a Lagrangian random walk model,together with three options for the parameterisation of the Lagrangian timescale, are compared in their ability to predict fluxes and scalar concentrationsof CO2, H2O and sensible heat within and above a mountain meadowin the eastern Alps. Results indicate that both scalar concentrations and ecosystemfluxes exhibit little sensitivity to the differences between the investigated modelsand may be predicted satisfactorily by one of the simpler models so long as thesource/sink strength is parameterised correctly. Model results also show littlesensitivity to the parameterisation of the vertical variation of the Lagrangiantime scale, yet the increase of the Lagrangian time scale towards the groundpredicted by one of the three investigated parameterisation options resulted inless agreement with measurements as compared to the other two, which assumedthe Lagrangian time scale to be either constant with height or to decay towardszero at the ground surface. Correspondence between simulated and measuredfluxes and scalar concentrations of CO2, H2O and sensible heat weregenerally satisfactory, except for shortly after the meadow was cut, when thesignificant increase of respiratory carbon losses could not be captured by themodel.

Evapotranspiration Grassland Localised near-field theory Photosynthesis Respiration SVAT model Turbulent dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., GrÜnwarld, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders,W., Valentini, R., and Vesala, T.: 2000, 'Estimates of the Annual Net Carbon and Water Exchange of Forest: The EUROFLUX Methodology', Adv. Ecol. Res. 30, 113–175.Google Scholar
  2. Baldocchi, D. D.: 1992, 'A Lagrangian Random Walk Model for Simulating Water Vapor, CO2 and Sensible Heat Flux Densities and Scalar Profiles over and within a Soybean Canopy', Boundary-Layer Meteorol. 61, 113–144.Google Scholar
  3. Baldocchi, D. D.: 1993, 'Scaling Water Vapour and Carbon Dioxide Exchange from Leaves to a Canopy: Rules and Tools', in J. R. Ehleringer and C. B. Field (eds.), Scaling Physiological Processes, Academic Press, San Diego, pp. 77–114.Google Scholar
  4. Baldocchi, D. D.: 2003, 'Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future', Global Change Biol. 9, 479–492.Google Scholar
  5. Baldocchi, D. D. and Harley, P. C.: 1995, 'Scaling Carbon Dioxide andWater Vapour Exchange from Leaf to Canopy in a Deciduous Forest. II. Model Testing and Application', Plant Cell Environ. 18, 1157–1173.Google Scholar
  6. Baldocchi, D. D. and Meyers, T.: 1998, 'On Using Eco-Physiological, Micrometeorological and Biogeochemical Theory to Evacuate Carbon Dioxide, Water Vapour and Trace Gas Fluxes over Vegetation: A Perspective', Agric. For. Meteorol. 90, 1–25.CrossRefGoogle Scholar
  7. Baldocchi, D. D. and Wilson, K. B.: 2001, 'Modelling CO2 and Water Vapour Exchange of a Temperate Broadleaved Forest across Hourly to Decadal Time Scales', Ecol. Model. 142, 155–184.Google Scholar
  8. Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: 1988, 'Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods', Ecology 69, 1331–1340.Google Scholar
  9. Baldocchi, D. D., Law, B. E., and Anthoni, P.M.: 2000, 'OnMeasuring andModelling Energy Fluxes above the Floor of a Homogeneous Conifer Forest', Agric. For. Meteorol. 102, 187–206.CrossRefGoogle Scholar
  10. Ball, J. T., Woodrow, I. E., and Berry, J. A.: 1987, 'A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions', in J. Biggens (ed.), Progress in Photosynthesis Research Vol. IV, Proceedings of the VII International Congress on Photosynthesis, Martinus Nijhoff, Dordrecht, pp. 221–224.Google Scholar
  11. Campbell, G. S.: 1985, Soil Physics with BASIC, Elsevier, Amsterdam, 150 pp.Google Scholar
  12. Campbell, G. S. and Norman, J. M.: 1998, An Introduction to Environmental Biophysics, Springer Verlag, New York, 286 pp.Google Scholar
  13. Cernusca, A. and Decker, P.: 1989, 'DeFaktorenabhängigkeit der Respiratorischen Kohlenstoffverluste einer Alpinen Grasheide (Caricetum curvulae) in 2300 m MH in den Hohen Tauern', in ed A. Cernusca (ed.), Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern, Veröffentlichungen des österreichischen MaB-Programms, Band 13, Universitätsverlag Wagner, Innsbruck, pp. 371–396.Google Scholar
  14. Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: 2002, 'Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration', Agric. For. Meteorol. 113, 21–37.CrossRefGoogle Scholar
  15. Denmead, O. T., Harper, L. A., and Sharpe, R. R.: 2000, 'Identifying Sources and Sinks of Scalars in Corn Canopy with Inverse Lagrangian Dispersion Analysis. I. Heat', Agric. For. Meteorol. 104,67–73.CrossRefGoogle Scholar
  16. Dolman, A. J. and Wallace, J. S.: 1991, 'Lagrangian and K-Theory Approaches in Modelling Evaporation from Sparse Canopies', Quart. J. Roy. Meteorol. Soc. 117, 1325–1340.CrossRefGoogle Scholar
  17. Falge, E., Graber, W., Siegwolf, R., and Tenhunen, J. D.: 1996, 'A Model of the Gas Exchange of Picea abiesto Habitat Conditions', Trees 10, 277–287.CrossRefGoogle Scholar
  18. Farquhar, G. D. and Von Caemmerer, S.: 1982, 'Modelling of Photosynthetic Response to Environmental Conditions', in O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (eds.), Physiological Plant Ecology Vol. II, Encyclopaedia of Plant Physiology 12B, Springer Verlag, Berlin, pp. 549–588.Google Scholar
  19. Farquhar, G. D., Von Caemmerer, S., and Berry, J. A.: 1980, 'A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species', Planta 149, 78–90.Google Scholar
  20. Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519–571.CrossRefGoogle Scholar
  21. Foken, T. and Wichura, B.: 1996, 'Tools for Quality Assessment of Surface-Based Flux Measurements', Agric. For. Meteorol. 78, 83–105.CrossRefGoogle Scholar
  22. Gilman, K.: 1977, Movement of Heat in Soils, Institute of Hydrology Report no. 44, Institute of Hydrology, Wallingford, Oxon, 45 pp.Google Scholar
  23. Goudriaan, J.: 1977, Crop Micrometeorology: A Simulation Study, Pudoc, Wageningen, 249 pp.Google Scholar
  24. Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.: 1996, 'Measurements of Carbon Sequestration by Long-Term Eddy Covariance: Methods and Critical Evaluation of Accuracy', Global Change Biol. 2, 169–182.Google Scholar
  25. Gu, L., Baldocchi, D. D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., and Dowty, P. R.: 2002, 'Superiority of Diffuse Radiation for Terrestrial Ecosystem Productivity', J. Geophys. Res. 107, DOI 10.1029/2001/JD001242.Google Scholar
  26. Gu, L., Shugart, H. H., Fuentes, J. D., Black, T. A., and Shewchuk, S. R.: 1999, 'Micrometeorology, Biophysical Exchanges and NEE Decomposition in a Two-Story Boreal Forest-Development and Test of an Integrated Model', Agric. For. Meteorol. 94, 123–148.CrossRefGoogle Scholar
  27. Harper, L. A., Denmead, O. T., and Sharpe, R. R.: 2000, 'Identifying Sources and Sinks of Scalars in a Corn Canopy with Inverse Lagrangian Dispersion Analysis. II. Ammonia', Agric. For. Meteorol. 104, 75–83.CrossRefGoogle Scholar
  28. Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M., and Scott, S. L.: 1997, 'Seasonal Variation of Carbon Dioxide, Water Vapour and Energy Exchanges of a Boreal Black Spruce Forest', J. Geophys. Res. 102, 28953–28966.CrossRefGoogle Scholar
  29. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, Oxford, 289 pp.Google Scholar
  30. Katul, G., Oren, R., Ellsworth, D., Hsieh, C.-I., and Philipps, N.: 1997, 'A Lagrangian Dispersion Model for Predicting CO2 Sources, Sinks, and Fluxes in a Uniform Loblolly Pine (Pinus taedaL.) Stand', J. Geophys. Res. 102, 9309–9321.CrossRefGoogle Scholar
  31. Lai, C.-T., Katul, G., Butnor, J., Ellsworth, D., and Oren, R.: 2002a, 'Modelling Night-Time Ecosystem Respiration by a Constrained Source Optimization Method', Global Change Biol. 8, 124–141.CrossRefGoogle Scholar
  32. Lai, C.-T., Katul, G., Butnor, J., Siqueira, M., Ellsworth, D., Maier, C., Johnsen, K., McKeand, S., and Oren, R.: 2002b, 'Modelling the Limits on the Response of Net carbon Exchange to Fertilization in a South-East Pine Forest', Plant Cell Environ. 25, 1095–1119.CrossRefGoogle Scholar
  33. Lai, C.-T., Katul, G., Ellsworth, D., and Oren, R.: 2000a, 'Modelling Vegetation-Atmosphere CO2 Exchange by a Coupled Eulerian-Lagrangian Approach', Boundary-Layer Meteorol. 95, 91–122.CrossRefGoogle Scholar
  34. Lai, C.-T., Katul, G., Oren, R., Ellsworth, D., and Schäfer, K.: 2000b, 'Modelling CO2 and Water Vapour Turbulent Flux Distribution within a Forest Canopy', J. Geophys. Res. 105, 2633–26351.CrossRefGoogle Scholar
  35. Larcher, W.: 2001, Ökophysiologie der Pflanzen, Verlag Eugen Ulmer, Stuttgart, 408 pp.Google Scholar
  36. Legg, B. J. and Raupach, M. R.: 1982, 'Markov-Chain simulation of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by the Gradient in Eulerian Velocity Variance', Boundary-Layer Meteorol. 24, 3–13.Google Scholar
  37. Leuning, R.: 2000, 'Estimation of Scalar Source/Sink Distributions in Plant Canopies Using Lagrangian Dispersion Analysis: Corrections for Atmospheric Stability and Comparison with a Multilayer Canopy Model', Boundary-Layer Meteorol. 96, 293–314.CrossRefGoogle Scholar
  38. Leuning, R., Denmead, O. T., Miyata, A., and Kim, J.: 2000, 'Source/Sink Distributions of Heat, Water Vapour, Carbon Dioxide and Methane in a Rice Canopy Estimated Using Lagrangian Dispersion Analysis', Agric. For. Meteorol. 104, 233–249.CrossRefGoogle Scholar
  39. Mahfouf, J. F. and Noilhan, J.: 1991, 'Comparative Study of Various Formulations of Evaporation from Bare Soil Using in situData', J. Appl. Meteorol. 30, 1354–1365.CrossRefGoogle Scholar
  40. Marcolla, B., Pitacco, A., and Cescatti, A.: 2003, 'Canopy Architecture and Turbulence Structure in a Coniferous Forest', Boundary-Layer Meteorol. 108, 35–59.CrossRefGoogle Scholar
  41. Massman, W. J.: 1997, 'An Analytical One-Dimensional Model of Momentum Transfer by Vegetation of Arbitrary Structure', Boundary-Layer Meteorol. 83, 407–421.CrossRefGoogle Scholar
  42. Massman, W. J. and Weil, J. C.: 1999, 'An Analytical One-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale within and above Plant Canopies of Arbitrary Structure', Boundary-Layer Meteorol. 91, 81–107.CrossRefGoogle Scholar
  43. McMillen, R. T.: 1988, 'An Eddy Correlation System with Extended Applicability to Non-Simple Terrain', Boundary-Layer Meteorol. 43, 231–245.Google Scholar
  44. McNaughton K. G. and Van den Hurk B. J. J. M.: 1995, 'A Lagrangian Revision of the Resistors in the Two Layer Model for Calculating the Energy Budget of a Plant Canopy', Boundary-Layer Meteorol. 74, 261–288.Google Scholar
  45. Monsi, M. and Saeki, T.: 1953, 'Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion', Jap. J. Bot. 14, 22–52.Google Scholar
  46. Moore, C. J.: 1986, 'Frequency Response Corrections for Eddy Correlation Systems', Boundary-Layer Meteorol. 37, 17–35.Google Scholar
  47. Nikolov, N. T and Zeller, K. F.: 2003, 'Modelling Coupled Interactions of Carbon, Water, and Ozone Exchange between Terrestrial Ecosystems and the Atmosphere. I: Model Description', Environ. Poll. 124, 231–246.CrossRefGoogle Scholar
  48. Nikolov, N. T.,Massman, W. J., and Schoettle, A.W.: 1995, 'Coupling Biochemical and Biophysical Processes at the Leaf Level: An Equilibrium Photosynthesis Model for Leaves of C3 Plants', Ecol. Model. 80, 205–235.CrossRefGoogle Scholar
  49. Ogee, J. and Brunet, Y.: 2002, 'A Forest Floor Model for Heat andMoisture Including a Litter Layer', J. Hydrol. 255, 212–233.CrossRefGoogle Scholar
  50. Ogee, J., Brunet, Y., Loustau, D., Berbigier, P., and Delzon, S.: 2003, 'MuSICA, a CO2, Water and Energy Multilayer, Multileaf Pine Forest Model: Evaluation from Hourly to Yearly Time Scales and Sensitivity Analysis', Global Change Biol. 9, 697–717.CrossRefGoogle Scholar
  51. Raupach, M. R.: 1987, 'A Lagrangian Analysis of Scalar Transfer in Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 113, 107–120.CrossRefGoogle Scholar
  52. Raupach, M. R.: 1988, 'Canopy Transport Processes', in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment, Springer Verlag, Berlin, pp. 95–127.Google Scholar
  53. Raupach, M. R.: 1989a, 'A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 115, 609–632.CrossRefGoogle Scholar
  54. Raupach, M. R.: 1989b, 'Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies', Agric. For. Meteorol. 47, 85–108.CrossRefGoogle Scholar
  55. Raupach, M. R., Finkele, K., and Zhang, L.: 1997, SCAM (Soil-Canopy-Atmosphere Model) Description and Comparison with Field Data, CSIRO, Centre for Environmental Mechanics, Technical Report No. 132, Canberra, 81 pp.Google Scholar
  56. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy', Boundary-Layer Meteorol. 78, 351–382.Google Scholar
  57. Rayment, M. B.: 2000, 'Closed Chamber Systems Underestimate Coil CO2 Efflux', Eur. J. Soil Sci. 51, 107–110.CrossRefGoogle Scholar
  58. Ross, J.: 1981, The Radiation Regime and Architecture of Plant Stands, Junk Publishers, The Hague, 391 pp.Google Scholar
  59. Schotanus, P., Nieuwstadt, F. T. M., and de Bruin, H. A. R.: 1983, 'Temperature Measurement with a Sonic Anemometer and Its Application to Heat and Moisture Flux', Boundary-Layer Meteorol. 26, 81–93.Google Scholar
  60. Schuepp, P. H.: 1993, 'Tansley Review No. 59: Leaf Boundary Layers', New Phytologist 125, 477–507.Google Scholar
  61. Siqueira, M., Katul, G., and Lai, C.-T.: 2002, 'Quantifying Net Ecosystem Exchange by Multilevel Ecophysiological and Turbulent Transport Models', Adv. Water Res. 25, 1357–1366.CrossRefGoogle Scholar
  62. Siqueira, M., Leuning, R., Kolle, O., Kelliher, F.M., and Katul, G.G.: 2003, 'Modelling Sources and Sinks of CO2, H2O and Heat within a Siberian Pine Forest Using Three Inverse Methods', Quart. J. Royal Meteorol. Soc. 129, 1373–1393.CrossRefGoogle Scholar
  63. Tappeiner, U. and Cernusca, A.: 1998, 'Model Simulation of Spatial Distribution of Photosynthesis in Structurally Differing Plant Communities in the Central Caucasus', Ecol. Model. 113, 201–223.CrossRefGoogle Scholar
  64. Tappeiner, U., Cernusca, A., Siegwolf, R. T. W., Sapinsky, S., Newesely, Ch., Geissbühler, P., and Stefanicki, G.: 1999, 'Microclimate, Energy Budget and CO2 Gas Exchange of Ecosystems', in A. Cernusca, U. Tappeiner, and N. Bayfield (eds.), Land-Use Changes in European Mountain Ecosystems. ECOMONT-Concepts and Results, Blackwell Wissenschafts-Verlag, Berlin, pp. 135–145.Google Scholar
  65. Thomson, D. J.: 1987, 'Criteria for the Selection of Stochastic Models for Particle Trajectories in Turbulent Flows', J. Fluid Mech. 180, 529–556.Google Scholar
  66. Van den Hurk, B. J. J. M. and McNaughton, K. G.: 1995, 'Implementation of Near-Field Resistance in a Simple Two-Layer Surface Resistance Model', J. Hydrol. 166, 293–311.CrossRefGoogle Scholar
  67. Von Caemmerer, S., Evans, J. R., Hudson, G. S., and Andrews, T. J.: 1994, 'The Kinetics of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in vivo Inferred from Measurements of Photosynthesis in Leaves of Transgenic Tobacco', Planta 195, 88–97.Google Scholar
  68. Warland, J. S. and Thurtell, G. W.: 2000, 'A Lagrangian Solution to the Relationship between a Distributed Source and Concentration Profile', Boundary-Layer Meteorol. 96, 453–471.CrossRefGoogle Scholar
  69. Watanabe, T. and Mizutani, K.: 1996, 'Model Study on the Micrometeorological Aspects of Rainfall Interception Over an Evergreen Broad-Leaved Forest', Agric. For. Meteorol. 80, 195–214.CrossRefGoogle Scholar
  70. Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J.M., Munger, J.W., Fan, S.-M., and Nadelhoffer K. J.: 1996, 'Modelling the Soil-Plant-Atmosphere Continuum in a Quercus-Acer Stand at Harvard Forest: The Regulation of Stomatal Conductance by Light, Nitrogen and Soil/Plant Hydraulic Properties', Plant Cell Environ. 19, 911–927.Google Scholar
  71. Wilson, T. B., Bland, W. L., and Norman J. M.: 1999, 'Measurement and Simulation of Dew Accumulation and Drying in a Potato Canopy', Agric. For. Meteorol. 93, 111–119.CrossRefGoogle Scholar
  72. Wilson, T. B., Norman, J. M., Bland, W. L., and Kucharik, C. J.: 2003, 'Evaluation of the Importance of Lagrangian Canopy Turbulence Formulations in a Soil-Plant-Atmosphere Model', Agric. For. Meteorol. 115, 51–69.CrossRefGoogle Scholar
  73. Wohlfahrt, G. and Cernusca, A.: 2001, 'Momentum Transfer by a Mountain Meadow Canopy: A Simulation Analysis Based on Massman's (1997) Model', Boundary-Layer Meteorol. 103, 391–407.CrossRefGoogle Scholar
  74. Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., Tappeiner, U., and Cernusca, A.: 1999, 'Inter-Specific Variation of the Biochemical Limitation to Photosynthesis and Related Leaf Traits of 30 Species from Mountain Grassland Ecosystems under Different Land Use', Plant Cell Environ. 22, 1281–1296.CrossRefGoogle Scholar
  75. Wohlfahrt, G., Bahn, M., Horak, I., Tappeiner, U., and Cernusca, A.: 1998, 'A Nitrogen Sensitive Model of Leaf Carbon Dioxide and Water Vapour Gas Exchange: Application to 13 Key Species from Differently Managed Mountain Grassland Ecosystems', Ecol. Model. 113, 179–199.CrossRefGoogle Scholar
  76. Wohlfahrt, G., Bahn, M., Tappeiner, U., and Cernusca, A.: 2000, 'A Model of Whole Plant Gas Exchange for Herbaceous Species from Mountain Grassland Sites Differing in Land Use', Ecol. Model. 125, 173–201.CrossRefGoogle Scholar
  77. Wohlfahrt, G., Bahn, M., Tappeiner, U., and Cernusca, A.: 2001, 'A Multi-Component,Multi-Species Model of Vegetation-Atmosphere CO2 and Energy Exchange for Mountain Grasslands', Agric.For. Meteorol. 106, 261–287.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Georg Wohlfahrt
    • 1
  1. 1.Institut für Botanik, Universität InnsbruckInnsbruckAustria

Personalised recommendations