Boundary-Layer Meteorology

, Volume 112, Issue 3, pp 587–617 | Cite as

The Influence of Thermal Effects on the Wind Speed Profile of the Coastal Marine Boundary Layer

  • Bernhard Lange
  • Søren Larsen
  • Jørgen Højstrup
  • Rebecca Barthelmie


The wind speed profile in a coastal marine environment is investigated with observations from the measurement program Rødsand, where meteorological data are collected with a 50 m high mast in the Danish Baltic Sea, about 11 km from the coast. When compared with the standard Monin—Obukhov theory the measured wind speed increase between 10 m and 50 m height is found to be systematically larger than predicted for stable and near-neutral conditions. The data indicate that the deviation is smaller for short (10–20 km) distances to the coast than for larger (>30 km) distances.

The theory of the planetary boundary layer with an inversion lid offers a qualitative explanation for these findings. When warm air is advected over colder water, a capping inversion typically develops. The air below is constantly cooled by the water and gradually develops into a well-mixed layer with near-neutral stratification. Typical examples as well as scatter plots of the data are consistent with this explanation. The deviation of measured and predicted wind speed profiles is shown to be correlated with the estimated height and strength of the inversion layer.

Atmospheric stratification Coastal influences Marine boundary layer Monin-Obukhov theory Wind speed profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.Google Scholar
  2. Charnock, H.: 1955, ‘Wind Stress over a Water Surface’, Quart. J. Roy. Meteorol. Soc. 81, 639–640.Google Scholar
  3. Csanady, G. T.: 1974, ‘Equilibrium Theory of the Planetary Boundary Layer with an Inversion Lid’, Boundary-Layer Meteorol. 6, 63–79.CrossRefGoogle Scholar
  4. Edson, J. B. and Fairall, C. W.: 1998, ‘Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets’, J. Atmos. Sci. 55, 2311–2328.CrossRefGoogle Scholar
  5. Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: 1996, ‘Cool-Skin and Warm-Layer Effects on Sea Surface Temperature’, J. Geophys. Res. 101(C1), 1295–1308.CrossRefGoogle Scholar
  6. Garratt, J. R.: 1987, ‘The Stably Stratified Internal Boundary Layer for Steady and Diurnally Varying Offshore Flow’, Boundary-Layer Meteorol. 38, 169–394.CrossRefGoogle Scholar
  7. Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  8. Garratt, J. R. and Ryan B. F.: 1989, ‘The Structure of the Stably Stratified Internal Boundary Layer in Offshore Flow over the Sea’, Boundary-Layer Meteorol. 47, 17–40.CrossRefGoogle Scholar
  9. Geernaert, G. and Larsen, S.: 1993, ‘On the Role of Humidity in Estimating Marine Surface Layer Stratification and Scaterometer Cross Section’, J. Geophys. Res. 98(C1), 927–932.Google Scholar
  10. Grachev, A. A. and Fairall C. W.: 1997, ‘Dependence of the Monin-Obukhov Stability Parameter on the Bulk Richardson Number over the Ocean’, J. Appl. Meteorol. 36, 406–414.CrossRefGoogle Scholar
  11. Högström, U.: 1988, ‘Nondimensional Wind and Temperature Profiles’, Boundary-Layer Meteorol. 42, 55–78.CrossRefGoogle Scholar
  12. Højstrup, J.: 1999, ‘Vertical Extrapolation of Offshore Wind Profiles’, in E. L. Petersen, P. Hjuler Jensen, K. Rave, P. Helm, and H. Ehmann (eds.), Wind Energy for the Next Millennium. Proceedings. 1999 European Wind Energy Conference (EWEC '99), Nice, FR, March 1-5, 1999, James and James Science Publishers, London, U.K., pp. 1220–1223.Google Scholar
  13. Johnson, H. K., Højstrup, J., Vested, H. J., and Larsen S. E.: 1998, ‘On the Dependence of Sea Surface Roughness on Wind Waves’, J. Phys. Oceanogr. 28, 1702–1716.CrossRefGoogle Scholar
  14. Källstrand, B.: 1998, ‘Low Level Jets in a Marine Boundary Layer during Spring’, Contr. Atmos. Phys. 71, 359–373.Google Scholar
  15. Kristensen, L.: 1998, ‘Cup Anemometer Behaviour in Turbulent Environments’, J. Atmos. Oceanic Tech. 15, 5–17.CrossRefGoogle Scholar
  16. Lange, B., Barthelmie, R. J., and Højstrup, J.: 2001, Description of the Rødsand Field Measurement, Report Risø-R-1268, Risø National Laboratory, 4000 Roskilde, DK, 60 pp.Google Scholar
  17. Lange, B., Johnson, H.K., Larsen, S., Højstrup, J., Kofoed-Hansen, H., and Yelland, M. J.: 2004, ‘On Detection of a Wave Age Dependency for the Sea Surface Roughness’, J. Phys. Oceanog., in press.Google Scholar
  18. Larsen, S. E.: 1993, ‘Observing and Modelling the Planetary Boundary Layer’, in E. Raschke and D. Jacob (eds.), Energy and Water Cycles in the Climate System, NATO ASI series I, Volume 5, Springer-Verlag, Berlin, Heidelberg, pp. 365–418.Google Scholar
  19. Lenschow D. H., Li X. S., Zhu C. J., and Stankov, B. B.: 1988, ‘The Stably Stratified Boundary Layer over the Great Plains, I, Mean and Turbulence Structure’, Boundary-Layer Meteorol. 42, 95–121.Google Scholar
  20. Melas, D.: 1989, ‘The Temperature Structure in a Stably Stratified Internal Boundary Layer over a Cold Sea’, Boundary-Layer Meteorol. 48, 361–375.CrossRefGoogle Scholar
  21. Mortensen, N. G., Landberg L., Troen, I., and Petersen, E. L.: 1993, Wind Analysis and Application Program (WASP)-User's Guide, Report Risø-I-666(EN) (v.2), Risø National Laboratory, 4000 Roskilde, Denmark, 133 pp.Google Scholar
  22. Panofsky, H. A.: 1973, ‘Tower Micrometeorology’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, 151–176.Google Scholar
  23. Schotanus, P., Nieuwstadt, F. T. M., and De Bruin, H. A.: 1983, ‘Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes’, Boundary-Layer Meteorol. 26, 81–93.CrossRefGoogle Scholar
  24. Smedman, A.-S., Bergström, H., and Grisogono, B.: 1997, ‘Evolution of Stable Internal Boundary Layers over a Cold Sea’, J. Geophys. Res. 102(C1), 1091–1099.CrossRefGoogle Scholar
  25. Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, Reidel, Hingham, MA, pp. 37–68.Google Scholar
  26. Tjernström, M., and Smedman, A.-S.: 1993, ‘The Vertical Turbulence Structure of the Coastal Marine Atmospheric Boundary Layer’, J. Geophys. Res. 98(C3), 4809–4826.Google Scholar
  27. Wu, J.: 1980, ‘Wind Stress Coefficients over Sea Surface near Neutral Conditions-A Revisit’, J. Phys. Oceanogr. 10, 727–740.Google Scholar
  28. Wyngaard, J. C.: 1973, ‘On Surface-Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 101–149.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bernhard Lange
    • 1
  • Søren Larsen
    • 2
  • Jørgen Højstrup
    • 2
  • Rebecca Barthelmie
    • 2
  1. 1.Institute of PhysicsUniversity of OldenburgOldenburgGermany
  2. 2.Wind Energy Department, Risø National LaboratoryRoskildeDenmark

Personalised recommendations