Boundary-Layer Meteorology

, Volume 112, Issue 1, pp 129–157

Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest

  • D. Cava
  • U. Giostra
  • M. Siqueira
  • G. Katul


Using time series measurements of velocity, carbon dioxideand water vapour concentration, and temperature collected justabove a 15 m tall even-aged pine forest, we quantify the roleof organized motion on scalar and momentum transport withinthe nocturnal canopy sublayer (CSL). We propose a frameworkin which the nocturnal CSL has two end-members, bothdominated by organised motion. These end-members representfully developed turbulent flows at near-neutral or slightly stablestratification and no turbulence for very stable stratification.Our analysis suggests that ramps dominate scalar transport fornear-neutral and slightly stable conditions, while linear canopywaves dominate the flow dynamics for very stable conditions.For intermediate stability, the turbulence is highly damped andoften dominated by fine scale motions. Co-spectral analysissuggests that ramps are the most efficient net scalar mass-transportingagent while linear canopy waves contribute little to net scalartransport between the canopy and atmosphere for averagingintervals that include complete wave cycles. However, canopywaves significantly contribute to the spectral properties of thescalar time series. Ramps are the most frequently occurringorganised motion in the nocturnal CSL for this site.Numerous night-time runs, however, resided between thesetwo end-members. Our analysis suggests that whenradiative perturbations are sufficient large (>20 W m-2 innet radiation), the flow can switch from being highly dampedfine-scale turbulence to being organized with ramp-like properties. We also found that when ramps are already the dominant eddymotion in the nocturnal CSL, radiative perturbations have aminor impact on scalar transport. Finally, in agreement withprevious studies, we found that ramps and canopy waves havecomparable length scales of about 30–60 metres. Consequencesto night-time flux averaging are also discussed.

Canopy waves CO2 transport Nocturnal canopy sublayer Organized motion Radiative perturbations Ramps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson K., and Wofsy, S.: 2001, 'FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide,Water Vapour and Energy Flux Densities', Bull. Amer. Meteorol. Soc. 82, 2415–2435.Google Scholar
  2. Barford, C.C., Wofsy, S.C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., Hutyra, L., Saleska, S. R., Fitzjarrald, D., and Moore, K.: 2001, 'Factors Controlling Long-and Short-Term Sequestration of Atmospheric CO2 in a Mid-Latitude Forest', Science 294, 1688–1691.Google Scholar
  3. BergstrÖm, H. and HÖgstrom, U.: 1989, 'Turbulent Exchange above a Pine Forest. II Organised Structures', Boundary-Layer Meteorol. 49, 231–263.Google Scholar
  4. BergstrÖm, H. and Smedman, A. S.: 1994, 'Stably Stratified Flow in a Marine Atmospheric Surface Layer', Boundary-Layer Meteorol. 72, 239–265.Google Scholar
  5. Brunet, Y. and Irvine, M. R.: 2000, 'The Control of Coherent Eddies in Vegetation Canopies: Streamwise Structure Spacing, Canopy Shear Scale and Atmospheric Stability', Boundary-Layer Meteorol. 94, 139–163.Google Scholar
  6. Brunet, Y. and Collineau, S.: 1994, 'Wavelet Analysis of Diurnal and Nocturnal Turbulence above a Maize Crops', in Efi Foufoula-Georgiou and Praveen Kumar (eds.), Wavelet in Geophysics, Academic Press, Inc., pp. 129–150.Google Scholar
  7. Bush, N. E.: 1969, 'Waves and Turbulence', Radio Sci. 4, 1377–1379.Google Scholar
  8. Caughey, S. J.: 1977, 'Boundary-Layer Turbulence Spectra in Stable Conditions', Boundary-Layer Meteorol. 11, 3–14.Google Scholar
  9. Caughey, S. J. and Readings, C. J.: 1975, 'An Observation of Waves and Turbulence in the Earth's Boundary Layer', Boundary-Layer Meteorol. 9, 279–296.Google Scholar
  10. Collineau, S. and Brunet, Y.: 1993, 'Detection of Turbulent Coherent Motions in a Forest Canopy, Part II: Timescales and Conditional Averages', Boundary-Layer Meteorol. 66, 49–73.Google Scholar
  11. de Baas, A. F. and Driedonks, G. M.: 1985: 'Internal Gravity Waves in a Stably Stratified Boundary Layer', Boundary-Layer Meteorol. 31, 303–323.Google Scholar
  12. Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W., Oechel, W., Paw, K. T., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S.: 2002, 'Seasonality of Ecosystem Respiration and Gross Primary Production as Derived from FLUXNET Measurements', Agric. For. Meteorol. 113, 53–74.Google Scholar
  13. Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519–571.Google Scholar
  14. Fitzjarrald, D. R. and Moore, K. E.: 1990, 'Mechanisms of Nocturnal Exchange between the Rain Forest and the Atmosphere', J. Geophys. Res. 95D, 16839–16850.Google Scholar
  15. Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observation of Organised Structures in Turbulent Flow within and above a Forest Canopy', Boundary-Layer Meteorol. 47, 349–377.Google Scholar
  16. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, U.K., 316 pp.Google Scholar
  17. Hu, X., Lee, X., Stevens, D. E., and Smith, R. B.: 2002, 'A Numerical Study of Nocturnal Wavelike Motion in Forests', Boundary-Layer Meteorol. 102, 199–223.Google Scholar
  18. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, 'Some Observations of Turbulence Structure in a Stable Layer', Quart. J. Roy. Meteorol. Soc. 111, 793–815.Google Scholar
  19. Jenkins, G. M. and Watts, D. G.: 1968, in Spectral Analysis and its Applications, Holden-Day, Oackland, pp. 344–348.Google Scholar
  20. Katul, G. and Vidakovic, B.: 1998, 'Identification of Low-Dimensional Energy Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods', J. Atmos. Sci. 55, 377–389.Google Scholar
  21. Katul, G. G., Geron, C. D. Hsieh, C. I. Vidakovic, B., and Guenther, A. B.: 1998, 'Active Turbulence and Scalar Transport near the Land-Atmosphere Interface', J. Appl. Meteorol. 37, 1533–1546.Google Scholar
  22. Katul, G. G., Hsieh, C. I. Kuhn, G., Ellsworth, D., and Nie, D.: 1997, 'The Turbulent Eddy Motion at the Forest-Atmosphere Interface', J. Geophys. Res. 102, 13409–13421.Google Scholar
  23. Kolmogorov, A. N.: 1941, 'The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number', Dokl. Akad. Nauk. SSSR 30, 9–13.Google Scholar
  24. Lai, C. T., Katul, G. G., Butnor, J., Siqueira, M., Ellsworth, D., Maier, C., Johnsen, K., McKeand, S., and Oren, R.: 2002, 'Modeling the Limits on the Response of Net Carbon Exchange to Fertilization in a Southeastern Pine Forest', Plant Cell Environ. 25, 1095–1119.Google Scholar
  25. Lee, X.: 1997, 'Gravity Waves in a Forest: A Linear Analysis', J. Atmos. Sci. 54, 2574–2585.Google Scholar
  26. Lee, X. and Barr, A. G.: 1998, 'Climatology of Gravity Waves in a Forest', Quart. J. Roy. Meteorol. Soc. 124, 1403–1419.Google Scholar
  27. Lee, X., Black, T. A., den Hartog, G., Neumann, H. H., Nesic, Z., and Olejnik, J.: 1996, 'Carbon Dioxide Exchange and Nocturnal Processes over a Mixed Deciduous Forest', Agric. For. Meteorol. 81, 13–29.Google Scholar
  28. Lee, X., Neumann, H. H., den Hartog, G., Fuentes, J. D., Black, T. A., Mickle, R. E., Yang, P. C., and Blanken, P. D.: 1997, 'Observation of Gravity Waves in a Boreal Forest', Boundary-Layer Meteorol. 84, 383–398.Google Scholar
  29. Mahrt, L.: 1999, 'Stratified Atmospheric Boundary Layers', Boundary-Layer Meteorol. 90, 375–396.Google Scholar
  30. McMillen, R. T.: 1988, 'An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain', Boundary-Layer Meteorol. 43, 231–245.Google Scholar
  31. Nai-Ping, L., Neff, W. D., and Kaimal, J. C.: 1983, 'Waves and Turbulence Structure in a Disturbed Nocturnal Inversion', Boundary-Layer Meteorol. 26, 141–155.Google Scholar
  32. Nappo, C. J.: 1991: 'Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain', Boundary-Layer Meteorol. 54, 69–87.Google Scholar
  33. Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, 'On Coherent Structures in Turbulence above and within Agricultural Plant Canopies', Agric. For. Meteorol. 61, 55–68.Google Scholar
  34. Press, W. H., Vetterling, W., Teukolsky, S., and Flannery, B.: 1992, Numerical Recipes in Fortran, Cambridge University Press, 962 pp.Google Scholar
  35. Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and above Plant Canopies', Annu. Rev. Fluid Mech. 13, 97–129.Google Scholar
  36. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetal Canopies: The Mixing Layer Analogy', Boundary-Layer Meteorol. 78, 351–382.Google Scholar
  37. Shaw, R. H., Paw U, K. T., and Gao, W.: 1989, 'Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site', Agric. For. Meteorol. 47, 123–138.Google Scholar
  38. Siqueira, M. B., Katul, G. G., and Lai, C. T.: 2002, 'Quantifying Net Ecosystem Exchange by Multilevel Ecophysiological and Turbulent Transport Models', Adv. Water Resour. 25, 1357–1366.Google Scholar
  39. Smedman, A. S.: 1988, 'Observation of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer', Boundary-Layer Meteorol. 44, 231–253.Google Scholar
  40. Stewart, R. W.: 1969, 'Turbulence and Waves in a Stratified Atmosphere', Radio Sci. 4, 1269–1278.Google Scholar
  41. Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  42. Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grunwald, T., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, U., Berbigier, P., Loustau, D., Guomundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S., and Jarvis, P. G.: 2000, Respiration as the Main Determinant of Carbon Balance in European Forests', Nature 404, 861–865.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. Cava
  • U. Giostra
  • M. Siqueira
  • G. Katul

There are no affiliations available

Personalised recommendations