Boundary-Layer Meteorology

, Volume 111, Issue 3, pp 441–465 | Cite as

Comparison of Large-Eddy Simulation Data with Spatially Averaged Measurements Obtained by Acoustic Tomography – Presuppositions and First Results

  • Sonja Weinbrecht
  • Siegfried Raasch
  • Astrid Ziemann
  • Klaus Arnold
  • Armin Raabe


An attempt is made to compare results oflarge-eddy simulation (LES) in a convective boundarylayer using the model PALM with experimental data obtained from acoustic travel time tomography.This method provides two-dimensional data arrays, which are considered as more suitable forLES-validation than classical local orline-integrated measurements, because the tomographic data are area- or volume-averaged.

For a quantitative comparison with experimental data in general, some prerequisites have to be considered: First of all, the initial and boundary conditions of the LES model have to be provided correctly by the experiment. Considering measurement errors, a sensitivity study was performed to investigate the influence of inaccurate initial and boundary conditions on the simulation results.

This showed that for determining some boundary conditions, such as the surface temperature and the roughness length, high measurement accuracies are necessary, which are difficult to reach or which at least require considerable extra measurement efforts.The initial and boundary conditions provided by the Lindenberg experiment in 1999 turned out to be of insufficient accuracy to allow quantitative comparisons.

However, a qualitative comparison was performed instead to investigate if the acoustic tomography method is a proper method for comparisons with LES models in general.It showed a good qualitative agreement with some quantitative differences. These differences can partly be explained by the sensitivity of the LES to initial and boundary conditions and by the limitations of the acoustic tomography.

Acoustic tomography Boundary-Layer observations Large-eddy simulation Sensitivity study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andren, A., Brown, A. R., Graf, J., Moeng, C.-H., Nieuwstadt, F. T. M., and Schumann, U.: 1994, 'Large-Eddy Simulation of a Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes', Quart. J. Roy. Meteorol. Soc. 120, 1457-1484.Google Scholar
  2. Arnold, K., Ziemann, A., and Raabe, A.: 1999, 'Acoustic Tomography inside the Atmospheric Boundary Layer', Phys. Chem. Earth PT B. 24, 133-137.Google Scholar
  3. Arnold, K., Ziemann, A., and Raabe, A.: 2001, 'Acoustic Tomography in Comparison to In-situ Temperature and Wind Measurements', Acustica-acta acustica 87, 703-708.Google Scholar
  4. British Atmospheric Data Centre: 2000, New web address: (last modified: 5.12.2002).Google Scholar
  5. Businger, J. A.: 1973, 'Turbulent Transfer in the Atmospheric Aurface Layer', in D. A. Haugen (ed.), Workshop on Micrometeorology, Boston, MA, pp. 67-100.Google Scholar
  6. Deardorff, J. W.: 1980, 'Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model', Boundary-Layer Meteorol. 18, 495-527.Google Scholar
  7. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H.: 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model', Phys. Fluids 3, 1760-1765.Google Scholar
  8. Khanna, S. and Brasseur, J. G.: 1998, 'Three-Dimensional Buoyancy-and Shear-Induced Local Structure of the Atmospheric Boundary Layer', J. Atmos. Sci. 55, 710-743.Google Scholar
  9. Mason, P. J. and Thomson, D. J.: 1992, 'Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers', J. Fluid Mech. 242, 51-78.Google Scholar
  10. Nieuwstadt, F. T. M., Mason, P. J., Moeng, C.-H., and Schumann, U.: 1993, 'Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes', in F. Durst, R. Friedrich, B. E. Launder, F. W. Schmidt, U. Schumann, and J. H. Whitelaw (eds.), Turbulent Shear Flows, Vol. 8. Springer, pp. 343-367.Google Scholar
  11. Noh, Y., Cheon, W.-G., Hong, S.-Y., and Raasch, S.: 2003, 'Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data', Boundary-Layer Meteorol. 107, 401-427.Google Scholar
  12. Oke, T. R.: 1987, Boundary Layer Climate, Routledge, London/New York, 435 pp.Google Scholar
  13. Raasch, S. and Etling, D.: 1991, 'Numerical Simulation of Rotating Turbulent Thermal Convection', Beitr. Phys. Atmosph. 64, 185-199.Google Scholar
  14. Raasch, S. and Etling, D.: 1998, 'Modelling Deep Ocean Convection: Large Eddy Simulation in Comparison with Laboratory Experiments', J. Phys. Oceanogr. 28, 1786-1802.Google Scholar
  15. Raasch, S. and Harbusch, G.: 2001, 'An Analysis of Secondary Circulations and their Effects Caused by Small-Scale Surface Inhomogeneities Using Large-Eddy Simulation', Boundary-Layer Meteorol. 101, 31-59.Google Scholar
  16. Raasch, S. and Schröter, M.: 2001, 'PALM-A Large-Eddy Simulation Model Performing on Massively Parallel Computers', Meteorol. Z., NF. 10, 363-372.Google Scholar
  17. Spiesberger, J. L. and Fristrup, K. M.: 1990, 'Passive Localization of Calling Animals and Sensing of their Acoustic Environment Using Acoustic Tomography', Am. Natural. 135, 107-153.Google Scholar
  18. Stevens, B. and Lenschow, D. H.: 2001, 'Observations, Experiments and Large Eddy Simulation', Bull. Amer. Meteor. Soc. 82, 283-294.Google Scholar
  19. Sullivan, P. P., McWilliams, J. C., and Moeng, C.-H.: 1994, 'A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary Layer Flows', Boundary-Layer Meteorol. 71, 247-276.Google Scholar
  20. Tong, C., Wyngaard, J. C., and Brasseur, J. G.: 1999, 'Experimental Study of the Subgrid-Scale Stresses in the Atmospheric Surface Layer', J. Atmos. Sci. 56, 2277-2292.Google Scholar
  21. Tong, C., Wyngaard, J. C., Khanna, S., and Brasseur, J. G.: 1998, 'Resolvable and Subgrid-Scale Measurements in the Atmospheric Surface Layer: Technique and Issues', J. Atmos. Sci. 55, 3114-3126.Google Scholar
  22. Weinbrecht, S. and Raasch, S.: 2001, 'High Resolution Simulations of the Turbulent Flow in the Vicinity of an Arctic Lead', J. Geophys. Res. 106(C11), 27035-27046.Google Scholar
  23. Wilson, D., Ziemann, A., Ostashev, V., and Voronovich, A.: 2001, 'An Overview of Acoustic Travel-Time Tomography in the Atmosphere and its Potential Applications', Acustica-Acta Acustica 87, 721-730.Google Scholar
  24. Wilson, D. K. and Thomson, D. W.: 1994, 'Acoustic Tomographic Monitoring of the Atmospheric Surface Layer', J. Atmos. Ocean. Technol. 11, 751-768.Google Scholar
  25. Wyngaard, J. C. and Peltier, L. J.: 1996, 'Experimental Micrometeorology in an Era of Turbulence Simulation', Boundary-Layer Meteorol. 78, 71-86.Google Scholar
  26. Ziemann, A., Arnold, K., and Raabe, A.: 1999a, 'Acoustic Tomography in the Atmospheric Surface Layer', Ann. Geophys.-Atm. Hydr. 17, 139-148.Google Scholar
  27. Ziemann, A., Arnold, K., and Raabe, A.: 1999b, 'Acoustic Travel Time Tomography-A Method for Remote Sensing of the Atmospheric Surface Layer', Meteorol. Atmos. Phys. 71, 43-51.Google Scholar
  28. Ziemann, A., Arnold, K., and Raabe, A.: 2001, 'Acoustic Tomography as a Method to Identify Small-Scale Land Surface Characteristics', Acustica-Acta Acustica 87, 731-737.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sonja Weinbrecht
    • 1
  • Siegfried Raasch
    • 1
  • Astrid Ziemann
    • 2
  • Klaus Arnold
    • 2
  • Armin Raabe
    • 2
  1. 1.Institut für Meteorologie und KlimatologieUniversität HannoverGermany
  2. 2.Leipziger Institut für MeteorologieUniversität LeipzigGermany

Personalised recommendations