Boundary-Layer Meteorology

, Volume 111, Issue 3, pp 363–415 | Cite as

Concentration Fluctuation Measurements in a Plume Dispersing Through a Regular Array of Obstacles

  • Eugene Yee
  • Christopher A. Biltoft


We describe a comprehensivestudy of the statistical characteristicsof concentration fluctuations in a neutrallybuoyant tracer plume dispersing through a largearray of building-like obstacles, each of whichmeasured 12.2 m × 2.42 m ×2.54 m. The plumes were released bothupwind and within the obstacle array for a rangeof source heights between 0.15 and 5.2 m.Detailed flow field and instantaneous plume concentrationdata were obtained from a comprehensive seriesof tracer experiments that utilized a large numberof high-resolution concentration detectors, accompaniedby the simultaneous acquisition ofmeteorological and turbulence measurements withsonic anemometer/thermometers.Extensive analyses are performed on the plumeconcentration data, and results are presented fora number of concentration statistics such as themean plume lateral and vertical spreads, meanconcentration, fluctuation intensity, peakconcentration to concentration standard deviationratio, concentration probability density function (pdf),concentration power spectra, and variousconcentration time and length scales of dominant motionsin the array plume (e.g., integral scale,Taylor microscale).

For the range of downwind distances from the sourceexamined, the lateral mean concentration profiles arewell approximated by a Gaussian distribution. Thevertical profiles of mean concentration develop ina rather complex manner with downwind distance, withthe result that the reflected Gaussian form isgenerally a less than ideal description of the meanarray plume in the vertical direction. A comparisonof the array plume with an open-terrain plume as afunction of downwind distance indicates that theobstacle array significantly increases the lateraland vertical plume spreads and decreases the magnitudeof the plume centreline mean concentration.The small-scale, high-intensity turbulence generated in the obstaclearray results in a drastic reduction in theconcentration fluctuation level in the array plume compared to anopen-terrain plume under similar conditions. Theevolution of the concentration pdf at a fixed range, butwith decreasing height from above and into the obstaclearray is similar to that obtained at a fixed heightbut with increasing downwind distance from the source.The integral and Taylor microscale time and lengthscales of the plume increase significantly within theobstacle array. Concentration power spectra measuredwithin the array had a greater proportion of the totalconcentration variance in the lower frequencies(energetic subrange), with a correspondingly smallerproportion in the higher frequencies (inertial-convectivesubrange). It is believed that these effects result fromthe rapid and efficient stirring and mixing of plumematerial by the small-scale, high-intensity turbulencewithin the array.

Building effects Concentration fluctuations Flow Field Obstacle array Plume dispersion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baechlin, W., Theurer, W., and Plate, E. J.: 1991, 'Wind Field and Dispersion in a Built-Up Area-A Comparison between Field Experiments and Wind Tunnel Data', Atmos. Environ. 25A, 1135-1142.Google Scholar
  2. Baechlin, W., Theurer, W., and Plate, E. J.: 1992, 'Dispersion of Gases Released near the Ground in Built Up Areas: Experimental Results Compared to Simple Numerical Modelling', J. Wind Eng. Ind. Aero. 41-44, 2721-2732.Google Scholar
  3. Bara, B. M., Wilson, D. J., and Zelt, B. W.: 1992, 'Concentration Fluctuation Profiles from a Water Channel Simulation of a Ground-Level Release', Atmos. Environ. 26A, 1053-1062.Google Scholar
  4. Barry, P. J.: 1977, 'Stochastic Properties of Atmospheric Diffusivity', in Sulphur and its Inorganic Derivatives in the Canadian Environment, National Research Council of Canada, pp. 313-358.Google Scholar
  5. Biltoft, C. A.: 2001, Customer Report for Mock Urban Setting Test, DPG Document No. WDTCFR-01-121, West Desert Test Center, U.S. Army Dugway Proving Ground, Dugway, Utah, 58 pp.Google Scholar
  6. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189.Google Scholar
  7. Csanady, G. T.: 1973, Turbulent Diffusion in the Environment, D. Reidel Publishing Company, Dordrecht, 248 pp.Google Scholar
  8. Davidson, M. J., Mylne, K. R., Jones, C. D., Phillips, J. C., Perkins, R. J., Fung, J. C. H., and Hunt, J. C. R.: 1995, 'Plume Dispersion through Large Groups of Obstacles: A Field Investigation', Atmos. Environ. 29, 3245-3256.Google Scholar
  9. Davidson, M. J., Snyder, W. H., Lawson, R. E., and Hunt, J. C. R.: 1996, 'Wind Tunnel Simulations of Plume Dispersion through Groups of Obstacles', Atmos. Environ. 30, 3715-3731.Google Scholar
  10. Dinar, N., Kaplan, H., and Kleiman, M.: 1988, 'Characterization of Concentration Fluctuations of a Surface Plume in a Neutral Boundary Layer', Boundary-Layer Meteorol. 45, 157-175.Google Scholar
  11. Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.Google Scholar
  12. Etling, D: 1990, 'On Plume Meandering under Stable Stratification', Atmos. Environ. 24A, 1979-1984.Google Scholar
  13. Fackrell, J. E. and Robins, A. G.: 1982, 'Concentration Fluctuations and Fluxes in Plumes from Point Sources in a Turbulent Boundary Layer', J. Fluid Mech. 117, 1-26.Google Scholar
  14. Gifford, F. A. and Hanna, S. R.: 1973, 'Modelling Urban Air Pollution', Atmos. Environ. 7, 131-136.Google Scholar
  15. Hanna, S. R.: 1983, 'Lateral Turbulence Intensity and Plume Meandering during Stable Conditions', J. Clim. Appl. Meteorol. 22, 1424-1430.Google Scholar
  16. Hanna, S. R. and Chang, J.: 2001, 'Use of the Kit Fox Field Data to Analyze Dense Gas Dispersion Issues', Atmos. Environ. 35, 2231-2242.Google Scholar
  17. Hay, J. S. and Pasquill, F.: 1959, 'Diffusion from a Continuous Source in Relation to the Spectrum and Scales of Turbulence', Adv. Geophys. 6, 345-365.Google Scholar
  18. Högström, U.: 1988, 'Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 42, 55-78.Google Scholar
  19. Hosker, R. P.: 1984, 'Flow and Diffusion near Obstacles', in D. Randerson (ed.), Atmospheric Science and Power Production, Technical Information Center, U.S. Department of Energy, Washington, D.C., pp. 241-326.Google Scholar
  20. Hosker, R. P. and Pendergrass, W. R.: 1987, Flow and Dispersion near Clusters of Buildings, NOAA Technical Memorandum ERL ARL-153, Air Resources Laboratory, Silver Spring, Maryland, 85 pp.Google Scholar
  21. Jerram, N., Perkins, R. J., Fung, J. C. H., Davidson, M. J., Belcher, S. E., and Hunt, J. C. R.: 1995, 'Atmospheric Flow through Groups of Buildings and Dispersion from Localized Sources' in J. E. Cermak et al. (eds.), Wind Climate in Cities, Kluwer Academic Publishers, Dordrecht, Boston, pp. 109-130.Google Scholar
  22. Lewellen, W. S. and Sykes, R. I.: 1986, 'Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric Plumes', J. Clim. Appl. Meteorol. 25, 1145-1154.Google Scholar
  23. Macdonald, R.W., Griffiths, R. F., and Cheah, S. C.: 1997, 'Field Experiments of Dispersion through Regular Arrays of Cubic Structures', Atmos. Environ. 31, 783-795.Google Scholar
  24. Macdonald, R. W., Griffiths, R. F., and Hall, D. J.: 1998, 'A Comparison of Results from Scaled Field and Wind Tunnel Modelling of Dispersion in Arrays of Obstacles', Atmos. Environ. 32, 3845-3865.Google Scholar
  25. Martin, D. O.: 1971, 'An Urban Diffusion Model for Estimating Long-Term Average Values of Air Quality', J. Air Pollut. Control Assoc. 21, 16-19.Google Scholar
  26. Meroney, R. N.: 1982, 'Turbulence Diffusion near Buildings', in E. J. Plate (ed.), Engineering Meteorology, Elsevier, Amsterdam, pp. 481-525.Google Scholar
  27. Mylne, K. R.: 1993, 'The Vertical Profile of Concentration Fluctuations in Near Surface Plumes', Boundary-Layer Meteorol. 65, 111-136.Google Scholar
  28. Mylne, K. R. and Mason, P. J.: 1991, 'Concentration Fluctuation Measurements in a Dispersing Plume at a Range of Up to 1000 m', Quart. J. Roy. Meteorol. Soc. 117, 177-206.Google Scholar
  29. Pavageau, M. and Schatzmann, M.: 1999, 'Wind Tunnel Measurements of Concentration Fluctuations in an Urban Street Canyon', Atmos. Environ. 33, 3961-3971.Google Scholar
  30. Peterson, H., Lamb, B., and Stock, D.: 1990, 'Interpretation of Measured Tracer Concentration Fluctuations Using a Sinusoidal Meandering Plume Model', J. Appl. Meteorol. 29, 1284-1299.Google Scholar
  31. Raupach, M. R., Finnigan, J. J., and Brunet, Y., 1996: 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy', Boundary-Layer Meteorol. 78, 351-382.Google Scholar
  32. Sawford, B. L., Frost, C. C., and Allan, T. C.: 1985, 'Atmospheric Boundary-Layer Measurements of Concentration Statistics from Isolated and Multiple Sources', Boundary-Layer Meteorol. 31, 249-268.Google Scholar
  33. Stapountzis, H., Sawford, B. L., Hunt, J. C. R., and Britter, R. E.: 1986, 'Structure of the Temperature Field Downwind of a Line Source in Grid Turbulence', J. Fluid Mech. 165, 401-424.Google Scholar
  34. Stern, A. C., Boubel, R. W., Turner, D. B., and Fox, D. L.: 1984, Fundamentals of Air Pollution, 2nd edn., Academic Press Inc., San Diego, CA, 530 pp.Google Scholar
  35. Vincent, J. H.: 1978, 'Scalar Transport in the Near Aerodynamic Wakes of Surface Mounted Cubes', Atmos. Environ. 12, 1319-1322.Google Scholar
  36. Yee, E. and Chan, R.: 1997, 'A Simple Model for the Probability Density Function of Concentration Fluctuations in Atmospheric Plumes', Atmos. Environ. 31, 991-1002.Google Scholar
  37. Yee, E., Chan, R., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A., and Bowers, J. F.: 1994, 'Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector', J. Appl. Meteorol. 33, 996-1016.Google Scholar
  38. Yee, E., Chan, R., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A., and Bowers, J. F.: 1995, 'The Vertical Structure of Concentration Fluctuation Statistics in Plumes Dispersing in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 76, 41-67.Google Scholar
  39. Yee, E., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A., and Bowers, J. F.: 1993, 'Statistical Characteristics of Concentration Fluctuations in Dispersing Plumes in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 65, 69-109.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Eugene Yee
    • 1
  • Christopher A. Biltoft
    • 2
  1. 1.Defence R & D CanadaSuffieldMedicine HatCanada
  2. 2.Adiabat Meteorological ServicesSalt Lake CityU.S.A

Personalised recommendations