Biomedical Microdevices

, Volume 6, Issue 4, pp 311–324 | Cite as

Negative Dielectrophoretic Force Assisted Construction of Ordered Neuronal Networks on Cell Positioning Bioelectronic Chips

  • Zhe Yu
  • Guangxin Xiang
  • Liangbin Pan
  • Lihua Huang
  • Zhongyao Yu
  • Wanli Xing
  • Jing Cheng
Article

Abstract

Developing new methods and technologies in order to pattern neurons into regular networks is of utmost scientific interest in the field of neurological research. An efficient method here is developed for trapping neurons and constructing ordered neuronal networks on bioelectronic chips by using arrayed negative dielectrophoretic (DEP) forces. A special bioelectronic chip with well defined positioning electrode arrays was designed and fabricated on silicon substrate. When a high frequency AC signal was applied, the cell positioning bioelectronic chip (CPBC) is able to provide a well-defined non-uniform electric field, and thus generate negative DEP forces. The parameters, such as size of positioning electrode, conductivity of working solution, amplitude and frequency of power signal and cell concentration, were investigated to optimize the performance of the CPBC. When the neuron suspension was added onto the energized bioelectronic chip, the neurons were immediately trapped and quickly formed the predetermined pattern. Neurons may adhere and then be cultured directly on the CPBC, and show good neuron viability and neurite development. The formation of the ordered neuronal networks after two-week culture demonstrates that negative dielectrophoretic force assisted construction of ordered neuronal networks is effective, and it could be used to assist in monitoring functional activities of neuronal networks.

cell positioning bioelectronic chip dielectrophoretic force on-chip neuron culture ordered neuronal networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bove, M. Grattarola, S. Martinoia, and G. Verreschi, Bioelectrochem. Bioenerg. 38, 255–265 (1995).Google Scholar
  2. J.R. Buitenweg, W.L.C. Rutten, E. Marani, S.K.L. Polman, and J. Ursum, J. Neurosci. Meth. 115, 211–221 (2002).Google Scholar
  3. J.C. Chang, G.J. Brewer, and B.C. Wheeler, J. Neurosci. Res. 30, 300–307 (1991).Google Scholar
  4. J.C. Chang, G.J. Brewer, and B.C. Wheeler, Biomed. Microdevices 2, 245–253 (2000).Google Scholar
  5. J. Cheng, E.L. Sheldon, L. Wu, M. Heller, and J. O'Connell, Anal. Chem. 70, 2321–2326 (1998a).Google Scholar
  6. J. Cheng, E.L. Sheldon, L. Wu, A. Uribe, L.O. Gerrue, M. Heller, and J. OConnell, Nat. Biotechnol. 16, 541–546 (1998b).Google Scholar
  7. J.M. Corey, B.C. Wheeler, and G.J. Brewer, Biosens. Bioelectron. 16, 527–533 (2001).Google Scholar
  8. S.M. Crain and M.B. Bornstein, Science 176, 182–184 (1972).Google Scholar
  9. D.S. Cray, J.L. Tan, J. Voldman, and C.S. Chen, Biosens. Bioelectron. 197, 71–780 (2004).Google Scholar
  10. X. Cui, V.A. Lee, Y. Raphael, J.A. Wiler, J.F. Hetke, D.J. Anderson, and D.C. Martin, J. Biomed. Mater. Res. 56, 261–272 (2001).Google Scholar
  11. G.M. Edelman, Science 219, 450–457 (1983).Google Scholar
  12. G.D. Fischbach and M.A. Dichter, Dev. Biol. 37, 100–116 (1974).Google Scholar
  13. M. Grattarola and S. Martinoia, IEEE Trans. Biomed. Eng. 40, 35–41 (1993).Google Scholar
  14. G.W. Gross, IEEE Trans. Biomed. Eng. 26, 273–279 (1979).Google Scholar
  15. G.W. Gross, B.K. Rhoades, H.M.E. Azzazy, and M.C. Wu, Biosens. Bioelectron. 10, 553–567 (1995).Google Scholar
  16. D.O. Hebb, The Organization of Behavior: ANeuropsychological Theory (John Wiley & Sons, New York, 1949).Google Scholar
  17. T. Heida, W.L. Rutten, and E. Marani, IEEE Trans. Biomed. Eng. 48, 921–930 (2001a).Google Scholar
  18. T. Heida, P. Vulto, W.L. Rutten, and E. Marani, J. Neurosci. Meth. 110, 37–44 (2001b).Google Scholar
  19. T. Heida, J.B. Wagenaar, W.L. Rutten, and E. Marani, IEEE Trans. Biomed. Eng. 49, 1195–1203 (2002).Google Scholar
  20. T. Heida, Adv. Anat. Embryol. Cell Biol. 173, 1–77 (2003).Google Scholar
  21. T. Hirono, K. Torimitsu, A. Kawana, and J. Fukuda, Brain Res. 446, 189–194 (1988).Google Scholar
  22. Y. Huang and R. Pething, Meas. Sci. Technol. 2, 1142–1146 (1991).Google Scholar
  23. Y. Jimbo, H.P.C. Robinson, and A. Kawana, IEEE Trans. Biomed. Eng. 40, 804–810 (1993).Google Scholar
  24. Y. Jimbo, A. Kawana, P. Parodi, and V. Torre, Biol. Cybern. 83, 1–20 (2000).Google Scholar
  25. K.V. Kaler and T.B. Jones, Biophys. J. 57, 173–182 (1990).Google Scholar
  26. D. Kleinfeld, K.H. Kahler, and P.E. Hockberger, J. Neurosci. 8, 4096–4120 (1988).Google Scholar
  27. A. Lauer, A. Vogt, C.K. Yeung, W. Knoll, and A. Offenhäusser, Bioma-terials 23, 3123–3130 (2002).Google Scholar
  28. M.S. Lewickiy, Network: Comput. Neural Syst. 9, R53–R78 (1998).Google Scholar
  29. M.P. Maher, J. Pine, J. Wright, and Y.C. Tai, J. Neurosci. Meth. 87, 45–56 (1999).Google Scholar
  30. G.H. Markx and C.L. Davey, Enzy. Microb. Tech. 25, 161–171 (1999).Google Scholar
  31. P. Marszalek, D.S. Liu, and T.Y. Tsong, Biophys. J. 58, 1053–1058 (1990).Google Scholar
  32. S. Prasad, M. Yang, X. Zhang, C.S. Ozkan, and M. Ozkan, Biomed. Microdevices 5, 125–137 (2003).Google Scholar
  33. M. Scholl, C. Sprössler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll, and A. Offenhäusser, J. Neurosci. Meth. 23, 65–75 (2000).Google Scholar
  34. M. Sergio, B. Marco, T. Mariateresa, M. Benno, and G. Massimo, J. Neurosci. Meth. 87, 35–44 (1999).Google Scholar
  35. L. Stoppini, S. Duport, and P.L. Corrèges, J. Neurosci. Meth. 72, 23–33 (1997).Google Scholar
  36. G. Zeck and P. Fromherz, Proc. Nat. Acad. Sci. USA 98, 10457–10462 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Zhe Yu
    • 1
    • 2
  • Guangxin Xiang
    • 1
    • 2
  • Liangbin Pan
    • 1
    • 2
  • Lihua Huang
    • 2
  • Zhongyao Yu
    • 2
  • Wanli Xing
    • 1
  • Jing Cheng
    • 1
    • 2
  1. 1.Department of Biological Sciences and BiotechnologyTsinghua UniversityBeijingPeople's Republic of China;
  2. 2.National Engineering Research Center for Beijing Biochip TechnologyBeijingPeople's Republic of China

Personalised recommendations