Biomedical Microdevices

, Volume 6, Issue 3, pp 177–182 | Cite as

Microneedle Insertion Force Reduction Using Vibratory Actuation

  • Ming Yang
  • Jeffrey D. Zahn
Article

Abstract

The effect of vibratory actuation on microneedle insertion force was investigated. Hollow micro hypodermic injection needles were fabricated by a two-wafer polysilicon micromolding process. A vibratory actuator operating in the kHz range was coupled with the hypodermic microneedles. The force to insert microneedles into excized animal tissue was measured with a load cell. Results showed a greater than 70% reduction in microneedle insertion force by using vibratory actuation. The application of vibratory actuation provides a promising method to precisely control the microneedle insertion forces to overcome microneedle structural material limitations, minimize insertion pain, and enhance the efficiency of drug delivery.

microneedle insertion force vibratory actuation drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Brazzle, I. Papautsky, and A.B. Frazier, IEEE Engineering in Medicine and Biology Magazine 18(6), 53–58 (1999).Google Scholar
  2. J. Brazzle, D. Bartholomeusz, R. Davies, J. Andrade, R.A. Van Wageman, and A.B. Frazier, Proceedings 2000 Solid State Sensor and Actuator Workshop Hilton Head, S.C., 199–202 (2000).Google Scholar
  3. S. Chandrasekaran and A.B. Frazier, IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison, WI, 94–98 (May, 2002).Google Scholar
  4. J. Chen and K.D. Wise, Proceedings 1994 Solid State Sensor and Actuator Workshop, Hilton Head, S.C., 256–259 (1994).Google Scholar
  5. S.P. Davis, M.G. Allen, and M.R. Prausnitz, Proceedings of the 2nd Joint EMBS/BMES Conference Houston, TX, 498–499 (2002).Google Scholar
  6. S. Henry, D.V. McAllister, M. Allen, and M. Prausnitz, Proceedings of the IEEE Eleventh Annual International Workshop on MEMS, Heidelberg, Germany, 494–498 (1998).Google Scholar
  7. S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, and M.R. Prausnitz, Anesth. Analg. 92, 502–504 (2001).Google Scholar
  8. C.G. Keller and R.T. Howe, International Solid State Sensors and Actuator Conference. Transducers `95, Stockholm, Sweden, 376–379 (1995).Google Scholar
  9. J. Kost, J. Controlled Release 24, 247–255 (1993).Google Scholar
  10. A. Lal, Proc. of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 20(6), 2785–2790 (1998).Google Scholar
  11. A. Lal and R.M. White, Proc. IEEE Ultrasonic Symposium 1995 2, 1593–1596 (1995).Google Scholar
  12. K.S. Lebouitz and A.P. Pisano, Proceedings Microstructures and Microfabrication Systems IV, 194th meeting of the Electrochemical Society, Boston, MA (Nov. 1–6, 1998).Google Scholar
  13. D. Liepmann, A. Pisano, and B. Sage, Diabetes Technology & Therapeutics 1(4), 469–476 (1999).Google Scholar
  14. L. Lin, A.P. Pisano, and R.S. Muller, Proceedings 7th International Conference on Solid State Sensors and Actuators (Transducers'93), Yokohama, Japan, 237–240 (1993).Google Scholar
  15. D.V. McAllister, M.G. Allen, and M.R. Prausnitz, Annu. Rev. Biomed. Eng. 2, 289–313 (2000).Google Scholar
  16. D.V. McAllister, E Cros, S.P. Davis, L.M. Matta, M.R. Prausnitz, and M.G. Allen, Proceedings 10th International Conference on Solid State Sensors and Actuators (Transducers'99), 1098–1101 (1999).Google Scholar
  17. I.E. Papautsky, J.D. Brazzle, H. Swerdlow, and A.B. Frazier, IEEE International Conference on Engineering in Medicine and Biology Conference Chicago, IL (October, 1997).Google Scholar
  18. M.R. Prausnitz, In: Electronically Controlled Drug Delivery, edited by B. Bemer and S.M. Dinh (CRC Press, Boca Raton, FL, 1995).Google Scholar
  19. E.W Smith and H.L. Malbach, Percutaneous Penetration Enhancers (CRC Press, Boca Raton, FL, 1995).Google Scholar
  20. B. Stoeber and D. Liepmann, Proceedings of the first IEEE-EMBS Special Topic Conference on Microtechnology in Medicine & Biology, 224–228 (2000a).Google Scholar
  21. B. Stoeber and D. Liepmann, Proceedings of the ASME MEMS Division, IMECE, 1, 355–359 (2000b).Google Scholar
  22. B. Stoeber and D. Liepmann, Proceedings 2002 Solid State Sensor and Actuator Workshop Hilton Head, S.C., 77–80 (2002).Google Scholar
  23. P. Stupar and A.P. Pisano, Proceedings 11th International Conference on Solid State Sensors and Actuators (Transducers'01), Munich, Germany, 1356–1359 (2001).Google Scholar
  24. N. Talbot and A.P. Pisano, Proceedings 1998 Solid State Sensor and Actuator Workshop, Hilton Head S.C., 265–268 (1998).Google Scholar
  25. J.D. Zahn, N.H. Talbot, D. Liepmann, and A.P. Pisano, Biomedical Microdevices 2(4), 295–303 (2000a).Google Scholar
  26. J.D. Zahn, D. Trebotich, and D. Liepmann, Proceedings of the First IEEE EMBS Joint Conference on Microtechnology in Biology and Medicine, 375–380 (2000b).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ming Yang
    • 1
  • Jeffrey D. Zahn
    • 2
  1. 1.Department of BioengineeringThe Pennsylvania State UniversityU.S.A
  2. 2.Department of BioengineeringThe Pennsylvania State University and Materials Research Institute, The Pennsylvania State UniversityU.S.A

Personalised recommendations