Biomedical Microdevices

, Volume 6, Issue 2, pp 139–147

Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns

  • J.A. Barron
  • P. Wu
  • H.D. Ladouceur
  • B.R. Ringeisen
Article

Abstract

We have developed a laser-based printing technique, called biological laser printing (BioLP™). BioLP is a non-contact, orifice-free technique that rapidly deposits fL to nL scale volumes of biological material with spatial accuracy better than 5 μm. The printer's orifice-free nature allows for transfer of a wide range of biological material onto a variety of substrates. Control of transfer is performed via a computer-aided design/computer-aided manufacturing (CAD/CAM) system which allows for deposition rates up to 100 pixels of biological material per second using the current laser systems. In this article, we present a description of the apparatus, a model of the transfer process, and a comparison to other biological printing techniques. Further, examples of current system capabilities, such as adjacent deposition of multiple cell types, large-scale cell arrays, and preliminary experiments on creating multi-layer cell constructs are presented. These cell printing experiments not only demonstrate near 100% viability, they also are the first steps toward using BioLP to create heterogeneous 3-dimensional constructs for use in tissue engineering applications.

biological laser printing (BioLP) cell printing cell patterning tissue engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Barron, B.J. Spargo, and B.R. Ringeisen, Applied Physics A, in press (2004).Google Scholar
  2. 2.
    S. Belkin, Current Opinions in Microbiology 6, 206 (2003).Google Scholar
  3. 3.
    S. Belkin, T.K. Van Dyk, A.C. Vollmer, D.R. Smulski, and R.A. LaRossa, Environmental Toxicology and Water Quality 11, 179 (1996).Google Scholar
  4. 4.
    A. Bruckbauer, L.M. Ying, A.M. Rothery, D.J. Zhou, A.I. Shevchuk, C. Abell, Y.E. Korchev, and D. Klenerman, Journal of the American Chemical Society 124, 8810 (2002).Google Scholar
  5. 5.
    M.V. Catani, A. Rossi, A. Costanzo, S. Sabatini, M. Levrero, G. Melino, and L. Avigliano, Biochemical Journal 356, 77 (2001).Google Scholar
  6. 6.
    M.S. Chapekar, Journal of Biomedical Materials Research 53, 617 (2000).Google Scholar
  7. 7.
    Y. Dou, L.V. Zhigilei, A. Postawa, N. Winograd, and B.J. Garrison, Nuclear Instruments and Methods in Physics Research B 180, 105 (2001).Google Scholar
  8. 8.
    H.A. Fishman, O. Orwar, R.H. Scheller, and R.N. Zare, Proceedings of the National Academy of Sciences of the United States of America 92, 7877 (1995).Google Scholar
  9. 9.
    L.G. Griffith and G. Naughton, Science 295, 1009 (2002).Google Scholar
  10. 10.
    P. Gwynne and G. Heebner, Drug Discovery and Biotechnology Trends: Proteomics 2: Microarrays, the Next Step, Science E-Marketplace, http://www.sciencemag.org/feature/e-market/benchtop/ddbt_10303.shl (2003a).Google Scholar
  11. 11.
    P. Gwynne and G. Heebner, Drug Discovery and Biotechnology Trends: Analysis and Separation: DNA and Biochips 1, Science E-Marketplace, http://www.sciencemag.org/feature/e-market/benchtop/ddbd_0314.shl (2003b).Google Scholar
  12. 12.
    J. Hyun, S.J. Ahn, W.K. Lee, A. Chilkoti, and S. Zauscher, Nanoletters 2, 1203 (2002).Google Scholar
  13. 13.
    R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides, Biomaterials 20, 2363 (1999).Google Scholar
  14. 14.
    S. Kohler, S. Belkin, and R.D. Schmid, Fresenius Journal of Analytical Chemistry 366, 769 (2000).Google Scholar
  15. 15.
    K.B. Lee, J.H. Lim, and C.A. Mirkin, Journal of the American Chemical Society 125, 5588 (2003).Google Scholar
  16. 16.
    K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, and M. Miksich, Science 295, 1702 (2002).Google Scholar
  17. 17.
    W. Malomi, E. Straface, G. Donelli, and P.U. Giacomoni, European Journal of Dermatology 6, 414 (1996).Google Scholar
  18. 18.
    V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R.R. Markwald, Trends in Biotechnology 21, 157 (2003).Google Scholar
  19. 19.
    E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).Google Scholar
  20. 20.
    W.H. Parkinson and K. Yoshino, Chemical Physics 294, 31 (2003).Google Scholar
  21. 21.
    B.R. Ringeisen, J.A. Barron, and D.B. Krizman, in Protein Microarrays, edited by P. Schena (Jones and Bartlett, Boston, 2004).Google Scholar
  22. 22.
    B.R. Ringeisen, H. Kim, J.A. Barron, D.B. Krizman, D.B. Chrisey, S. Jackman, R.Y.C. Anyeung, and B.J. Spargo, Tissue Engineering, in press (2004).Google Scholar
  23. 23.
    B.R. Ringeisen, P.K. Wu, H. Kim, A. Pique, R.Y.C. Auyeung, H.D. Young, and D.B. Chrisey, Biotechnology Progress 18, 1126 (2002).Google Scholar
  24. 24.
    A. Roda, M. Guardigli, C. Russo, P. Pasini, and M. Baraldini, Biotechniques 28, 492 (2000).Google Scholar
  25. 25.
    R.S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides, Biomaterials 20, 2363 (1999).Google Scholar
  26. 26.
    C. Vedrine, J.C. Leclerc, C. Durrieu, and C. Tran-Minh, Biosensors and Bioelectronics 18, 457 (2003).Google Scholar
  27. 27.
    A.C. Vollmer, S. Belkin, D.R. Smulski, T.K. Van Dyk, and R.A. LaRossa, Applied and Environmental Microbiology 63, 2566 (1997).Google Scholar
  28. 28.
    W.C Wilson and T. Boland, Anatomical Record Part A-Discoveries in Molecular, Cellular and Evolutionary Biology 272A, 491 (2003).Google Scholar
  29. 29.
    P.K Wu, B.R. Ringeisen, D.B. Krizman, C.G. Frondoza, M. Brooks, D.M. Bubb, R.C.Y. Auyeung, A. Pique, B. Sparge, R.A. McGill, and D.B. Chrisey, Review of Scientific Instruments 74, 2546 (2003).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.A. Barron
    • 1
  • P. Wu
    • 2
  • H.D. Ladouceur
    • 1
  • B.R. Ringeisen
    • 1
  1. 1.Naval Research LaboratoryWashington
  2. 2.Southern Oregon UniversityAshland

Personalised recommendations