Biomedical Microdevices

, Volume 6, Issue 1, pp 75–80 | Cite as

Surface Effects on PCR Reactions in Multichip Microfluidic Platforms

  • Nicholas J. Panaro
  • Xing Jian Lou
  • Paolo Fortina
  • Larry J. Kricka
  • Peter Wilding
Article

Abstract

We evaluated the compatibility of several common plastics, commercially available plastic tubing and disposable syringes which might be useful in the construction of microfluidic platforms with respect to the polymerase chain reaction (PCR). A simple and inexpensive plastic test module was constructed in order to evaluate some of the construction plastics. We also investigated the effect of addition of PEG 8000 to PCR reaction mixtures on the compatibility of materials. These studies identified several common plastics, plastic tubing, and disposable syringes which were compatible with the PCR reaction.

polymerase chain reaction lab on a chip microfluidics microfluidic platform materials compatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J. Kricka and P. Wilding, Microchip PCR. Anal. Bioanal. Chem. 377, 820-825 (2003).Google Scholar
  2. 2.
    P. Wilding, Biochip Technology, edited by J. Cheng and L.J. Kricka (Harwood Academic Publishers, Philadelphia, 2001), p. 173.Google Scholar
  3. 3.
    B.C. Giordano, J. Ferrance, S. Swedberg, A.F. Huhmer, and J.P. Landers, Anal. Biochem. 291, 124-132 (2001).Google Scholar
  4. 4.
    M.A. Shoffner, J. Cheng, G.E. Hvichia, L.J. Kricka, and P. Wilding, Nucleic Acids Res. 24, 375-379 (1996).Google Scholar
  5. 5.
    N. Zhang, H. Tan, and E.S. Yeung, Anal. Chem. 71, 1138-1145 (1999).Google Scholar
  6. 6.
    M.A. Northrup, M.T. Ching, R.M. White, and R.T. Watson, Transducers'93, Seventh International Conference on Solid State Sensors and Actuators, Yokohama, Japan, 924-927 (1993).Google Scholar
  7. 7.
    P. Belgrader, B. Benett, D. Hadley, D. Long, R. Mariella Jr., F. Milanmovich, S. Nasarabadi, W. Nelson, J. Richards, and P. Stratton, Clin. Chem. 44, 2191-2194 (1998).Google Scholar
  8. 8.
    M.A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards J, and P. Stratton, Anal. Chem. 70, 918-922 (1998).Google Scholar
  9. 9.
    M.U. Kopp, A.J. de Mello, and A. Manz, Science 280, 1046-1048 (1998).Google Scholar
  10. 10.
    P.K. Yuen, L.J. Kricka, P. Fortina, N.J. Panaro, T. Sakazume, and P. Wilding, Genome Res. 11, 405-412 (2001).Google Scholar
  11. 11.
    P.A. Marsden, H.H.Q. Heng, S.W. Scherer, R.J. Stewart, A.V. Hall, X.-M. Shi, L.C. Tsui, and K.T. Schappert, J. Biol. Chem. 28, 17478-17488 (1993).Google Scholar
  12. 12.
    N.J. Panaro, P.K. Yuen, T. Sakazume, P. Fortina, L.J. Kricka, and P. Wilding, Clin. Chem. 46, 1851-1853 (2000).Google Scholar
  13. 13.
    T.B. Taylor, S.E. Harvey, M. Albin, L. Lebak, Y. Ning, L. Mowat, T. Schuerlein, and E. Principe, J. Biomed. Microdev. 1, 65-70 (1998).Google Scholar
  14. 14.
    B.C. Giordano, E.R. Copeland, and J.P. Landers, Electrophoresis 22, 334-340 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Nicholas J. Panaro
    • 1
  • Xing Jian Lou
    • 1
  • Paolo Fortina
    • 2
  • Larry J. Kricka
    • 1
  • Peter Wilding
    • 1
  1. 1.Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Center for Translational Medicine, Department of Medicine, Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations