BIT Numerical Mathematics

, Volume 44, Issue 3, pp 425–438 | Cite as

Trees, Renormalization and Differential Equations

  • Ch. Brouder
Article

Abstract

The Butcher group and its underlying Hopf algebra of rooted trees were originally formulated to describe Runge–Kutta methods in numerical analysis. In the past few years, these concepts turned out to have far-reaching applications in several areas of mathematics and physics: they were rediscovered in noncommutative geometry, they describe the combinatorics of renormalization in quantum field theory. The concept of Hopf algebra is introduced using a familiar example and the Hopf algebra of rooted trees is defined. Its role in Runge–Kutta methods, renormalization theory and noncommutative geometry is described.

Hopf algebra Runge–Kutta methods noncommutative geometry renormalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Berland and B. Owren, Algebraic structure on ordered rooted trees and their significance for Lie group integrators (2003), submitted.Google Scholar
  2. 2.
    J. Bricmont and A. Kupiainen, Renormalization group and the Ginsburg-Landau equation, Comm. Math. Phys., 150 (1992), pp. 193–208.Google Scholar
  3. 3.
    C. Brouder, Runge-Kutta methods and renormalization, Euro. Phys. J. C, 12 (2000), p. 521–534.Google Scholar
  4. 4.
    C. Brouder, Many-body theory of degenerate systems, 2003. arXiv:hep-ph/0309558.Google Scholar
  5. 5.
    C. Brouder and A. Frabetti, QED Hopf algebras on planar binary trees, J. Algebra, 267 (2003), pp. 298–322.Google Scholar
  6. 6.
    J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc., 3 (1963), pp. 185–201.Google Scholar
  7. 7.
    J. C. Butcher, An algebraic theory of integration methods, Math. Comput., 26 (1972), pp. 79–106.Google Scholar
  8. 8.
    J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Wiley, Chichester, 1987.Google Scholar
  9. 9.
    J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, Chichester, 2003.Google Scholar
  10. 10.
    F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices, 8 (2001), pp. 395–408.Google Scholar
  11. 11.
    L.-Y. Chen, N. Goldenfeld, and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett., 73 (1994), pp. 1311–1315.Google Scholar
  12. 12.
    A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.Google Scholar
  13. 13.
    A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), pp. 203–242.Google Scholar
  14. 14.
    A. Connes and D. Kreimer, Lessons from quantum eld theory-Hopf algebras and spacetime geometries, Lett. Math. Phys., 48 (1999), pp. 85–96.Google Scholar
  15. 15.
    A. Connes and D. Kreimer, Renormalization in quantum eld theory and the Riemann-Hilbert problem I:The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210 (2000), pp. 249–273.Google Scholar
  16. 16.
    A. Connes and D. Kreimer, Renormalization in quantum eld theory and the Riemann-Hilbert problem II:The β function, diffeomorphisms and the renormalization group, Comm. Math. Phys., 216 (2001), pp. 215–241.Google Scholar
  17. 17.
    A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys., 198 (1998), pp. 199–246.Google Scholar
  18. 18.
    A. Dür, Möbius Functions, Incidence Algebras and Power Series Representations, Springer, Berlin, 1986.Google Scholar
  19. 19.
    S.-I. Ei, K. Fujii, and T. Kunihiro, Renormalization-group method for reduction of evolution equations;invariant manifolds and envelopes, Ann. Phys., 298 (2002), pp. 24–57.Google Scholar
  20. 20.
    L. Foissy, —Les algèbres de Hopf des arbres enracin és d écor és. I, Bull. Sci. Math., 126 (2002), pp. 193–239.Google Scholar
  21. 21.
    L. Foissy, —Les algèbres de Hopf des arbres enracinés décor és. II, Bull. Sci. Math., 126 (2002), pp. 249–288.Google Scholar
  22. 22.
    J. M. Gracia-Bondia, J. C. Varilly, and H. Figueroa, Elements of Noncommutative Geometry, Birkh¨auser, Boston, 2001.Google Scholar
  23. 23.
    R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees, J. Algebra, 126 (1989), pp. 184–210.Google Scholar
  24. 24.
    E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I:Nonsti. Problems, 2nd edn, Springer, Berlin, 2000.Google Scholar
  25. 25.
    E. Hairer and G. Wanner, On the Butcher group and general multi-value methods, Computing, 13 (1974), pp. 1–15.Google Scholar
  26. 26.
    R. Holtkamp, Comparison of Hopf algebras on trees, Arch. Math., 80 (2003), pp. 368–383.Google Scholar
  27. 27.
    C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980.Google Scholar
  28. 28.
    T. Krajewski and R. Wulkenhaar, On Kreimer 's Hopf algebra structure of Feynman graphs, Eur. Phys. J. C, 7 (1999), pp. 697–708.Google Scholar
  29. 29.
    D. Kreimer, On the Hopf algebra structure of perturbative quantum eld theory, Adv. Th. Math. Phys., 2 (1998), pp. 303–334.Google Scholar
  30. 30.
    D. Kreimer, Chen 's iterated integral represents the operator product expansion, Adv. Th. Math. Phys., 3 (1999).Google Scholar
  31. 31.
    J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Adv. Math., 139 (1998), pp. 293–309.Google Scholar
  32. 32.
    S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995.Google Scholar
  33. 33.
    H. Munthe-Kaas and K. Krogstad, On enumeration problems in Lie-Butcher theory, Future Gener. Comput. Syst., 19 (2003), pp. 1197–205.Google Scholar
  34. 34.
    F. Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., 51 (2000), pp. 211–219.Google Scholar
  35. 35.
    A. S. Wightman, Orientation (renormalisation theory), in G. Velo and A. Wightman (eds), Proceedings of the NATO Advanced Study Intitute on Renormalization Theory, Reidel, Dordrecht, 1976, pp. 1–24.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ch. Brouder
    • 1
  1. 1.Laboratoire de Minéralogie-Cristallographie, CNRS UMR7590Universités Paris 6 et 7, IPGP, 4 place JussieuParis Cedex 05France. email

Personalised recommendations