BIT Numerical Mathematics

, Volume 43, Issue 3, pp 467–483 | Cite as

Modified Implicit–Explicit BDF Methods for Nonlinear Parabolic Equations

  • Georgios Akrivis
  • Fotini Karakatsani
Article

Abstract

Implicit–explicit multistep methods for nonlinear parabolic equations were recently analyzed. If the implicit scheme is one of the backward differentiation formulae (BDF) of order up to six, then the corresponding implicit–explicit method of the same order is stable provided the stability constant is less than a specific scheme-dependent constant. Based on BDF, implicit methods are constructed such that the corresponding implicit–explicit scheme of the same order exhibits improved stability properties.

implicit–explicit multistep schemes nonlinear parabolic equations backward differentiation formulae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations, Math. Comp. (to appear).Google Scholar
  2. 2.
    G. Akrivis, M. Crouzeix, and Ch. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp., 67 (1998), pp. 457-477.Google Scholar
  3. 3.
    G. Akrivis, M. Crouzeix, and Ch. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math 82 (1999), pp. 521-541.Google Scholar
  4. 4.
    G. Akrivis, O. Karakashian, and F. Karakatsani, Linearly implicit methods for nonlinear evolution equations, Numer. Math94 (2003), pp. 403-418.Google Scholar
  5. 5.
    M. Crouzeix, Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques, Numer. Math 35 (1980), pp. 257-276.Google Scholar
  6. 6.
    Ch. Fredebeul, A-BDF: A generalization of the backward differentiation formulae, SIAM J. Numer. Anal 35 (1998), pp. 1917-1938.Google Scholar
  7. 7.
    E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Comput. Math. 8, Springer-Verlag, Berlin, 1987.Google Scholar
  8. 8.
    E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Comput. Math. 14, Springer-Verlag, Berlin, 1991.Google Scholar
  9. 9.
    J. D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, Baffins Lane, 1991.Google Scholar
  10. 10.
    V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Comput. Math. 25, Springer-Verlag, Berlin, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Georgios Akrivis
    • 1
  • Fotini Karakatsani
    • 2
  1. 1.Computer Science DepartmentUniversity of IoanninaIoanninaGreece
  2. 2.Mathematics DepartmentUniversity of CreteHeraklion, CreteGreece

Personalised recommendations