Biochemistry (Moscow)

, Volume 69, Issue 10, pp 1148–1157 | Cite as

Comparative Study of Structure and Activity of Cytotoxins from Venom of the Cobras Naja oxiana, Naja kaouthia, and Naja haje

  • A. V. Feofanov
  • G. V. Sharonov
  • M. A. Dubinnyi
  • M. V. Astapova
  • I. A. Kudelina
  • P. V. Dubovskii
  • D. I. Rodionov
  • Yu. N. Utkin
  • A. S. Arseniev

Abstract

Cytotoxins are positively charged polypeptides that constitute about 60% of all proteins in cobra venom; they have a wide spectrum of biological activities. By CD spectroscopy, cytotoxins CT1 and CT2 Naja oxiana, CT3 Naja kaouthia, and CT1 and CT2 Naja haje were shown to have similar secondary structure in an aqueous environment, with dominating β-sheet structure, and to vary in the twisting angle of the β-sheet and the conformation of disulfide groups. Using dodecylphosphocholine micelles and liposomes, CT1 and CT2 Naja oxiana were shown to incorporate into lipid structures without changes in the secondary structure of the peptides. The binding of CT1 and CT2 Naja oxiana with liposomes was associated with an increase in the β-sheet twisting and a sign change of the dihedral angle of one disulfide group. The cytotoxins were considerably different in cytotoxicity and cooperativity of the effect on human promyelocytic leukemia cells HL60, mouse myelomonocytic cells WEHI-3, and human erythroleukemic cells K562. The most toxic CT2 Naja oxiana and CT3 Naja kaouthia possessed low cooperativity of interaction (Hill coefficient h = 0.6-0.8), unlike 10-20-fold less toxic CT1 and CT2 Naja haje (h = 1.2-1.7). CT1 Naja oxiana has an intermediate position on the cytotoxicity scale and is characterized by h = 0.5-0.8. The cytotoxins under study induced necrosis of HL60 cells and failed to activate apoptosis. The differences in cytotoxicity are supposed to be related not with features of the secondary structure of the peptides, but with interactions of side chains of variable amino acid residues with lipids and/or membrane proteins.

cytotoxin cytotoxicity circular dichroism secondary structure liposomes 

REFERENCES

  1. 1.
    Kini, R.M. (2002) Clin. Exp. Pharmacol. Physiol.,29, 815–822.Google Scholar
  2. 2.
    Dufton, M.J., and Hider, R.C. (1988) Pharmacol. Ther., 36, 1–40.Google Scholar
  3. 3.
    Dufton, M.J., and Hider, R.C. (1991) in Snake Toxins(Harvey, A.L.,ed.) Pergamon Press Inc., New York,pp. 259–302.Google Scholar
  4. 4.
    Wu, W., Li, Y., and Szabo, G. (1993) FASEB J.,7, A1235.Google Scholar
  5. 5.
    Rees, B., and Bilwes, A. (1993) Chem. Res. Toxicol.,6, 385–406.Google Scholar
  6. 6.
    Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A.A., Rule, G.S., and Wu, W.-G. (1994) J. Biol. Chem.,269, 14473–14483.Google Scholar
  7. 7.
    Bilwes, A., Rees, B., Moras, D., Menez, R., and Menez, A. (1994) J. Mol. Biol.,239, 122–136.Google Scholar
  8. 8.
    Harvey, A.L. (1991) in Handbook of Natural Toxins(Tu, A.T.,ed.)Vol.5,Marcel Dekker,Inc., New York,pp.85–106.Google Scholar
  9. 9.
    Fletcher, J.E., and Jiang, M.-S. (1993) Toxicon, 31, 669–695.Google Scholar
  10. 10.
    Jayaraman, G., Kumar, T.K., Tsai, C.C., Srisailam, S., Chou, S.H., Ho, C.L., and Yu, C. (2000) Protein Sci.,9, 637–646.Google Scholar
  11. 11.
    Su, S.H., Su, S.J., Lin, S.R., and Chang, K.L. (2003) Toxicol. Appl. Pharmacol.,193, 97–105.Google Scholar
  12. 12.
    Kuo, J.F., Raynor, R.L., Mazzei, G.J., Schatzman, R.C., Turner, R.S., and Kem, W.R. (1983) FEBS Lett.,153, 183–186.Google Scholar
  13. 13.
    Chiou, S.H., Raynor, R.L., Zheng, B., Chambers, T.C., and Kuo, J.F. (1993) Biochemistry, 32, 2062–2067.Google Scholar
  14. 14.
    Chiou, S.H., Hung, C.C., Huang, H.C., Chen, S.T., Wang, K.T., and Yang, C.C. (1995) Biochem. Biophys. Res. Commun.,206, 22–32.Google Scholar
  15. 15.
    Harvey, A.L. (1985) J.Toxicol. Toxin. Rev.,4, 41–69.Google Scholar
  16. 16.
    Lin, S.R., Chang, L.S., and Chang, K.L. (2002) J. Protein Chem.,21, 81–86.Google Scholar
  17. 17.
    Abu-Sinna, G., Esmat, A.Y., Al-Zahaby, A.A., Soliman, N.A., and Ibrahim, T.M. (2003) Toxicon, 42, 207–215.Google Scholar
  18. 18.
    Iwaguchi, T., Takechi, M., and Hayashi, K. (1985) Biochem. Int.,10, 343–349.Google Scholar
  19. 19.
    Stevens-Truss, R., Messer, W.S., and Hinman, C.L. (1996) J.Membr. Biol.,150, 113–122.Google Scholar
  20. 20.
    Hinman, C.L., Jiang, X.L., and Tang, H.P. (1990) Toxicol. Appl. Pharmacol.,104, 290–300.Google Scholar
  21. 21.
    Kahn, P.C. (1979) Meth. Enzymol.,61, 339–378.Google Scholar
  22. 22.
    Dementieva, D.V., Utkin, Y.N., and Arseniev, A.S. (1996) Bioorg. Khim.,22, 339–352.Google Scholar
  23. 23.
    Dementieva, D.V., Bocharov, E.V., and Arseniev, A.S. (1999) Eur. J. Biochem.,263, 152–162.Google Scholar
  24. 24.
    Dubovskii, P.V., Dementieva, D.V., Bocharov, E.V., Utkin, Y.N., and Arseniev, A.S. (2001) J. Mol. Biol.,305, 137–149.Google Scholar
  25. 25.
    Grishin, E.V., Sukhikh, A.P., Adamovich, T.B., and Ovchinnikov, Yu.A. (1976) Bioorg. Khim.,2, 1018–1034.Google Scholar
  26. 26.
    Dubinnyi, M.A., Dubovskii, P.V., Utkin, Y.N., Simonova, T.N., Barsukov, L.I., and Arseniev, A.S. (2001) Bioorg. Khim.,27, 102–113.Google Scholar
  27. 27.
    Feofanov, A., Grichine, A., Karmakova, T., Pljutinskaya, A., Lebedeva, V., Filyasova, A., Yakubovskaya, R., Mironov, A., Egret-Charlier, M., and Vigny, P. (2002) Photochem. Photobiol.,75, 633–643.Google Scholar
  28. 28.
    Grognet, J.M., Menez, A., Drake, A., Hayashi, K., Morrison, I.E., and Hider, R.C. (1988) Eur. J. Biochem., 172, 383–388.Google Scholar
  29. 29.
    Hider, R.C., Drake, A.F., and Tamiya, N. (1988) Biopolymers, 27, 113–122.Google Scholar
  30. 30.
    Illangasekare, M.P., and Woody, R.W. (1986) Biophys. J., 49, 296a.Google Scholar
  31. 31.
    Golovanov, A.P., Efremov, R.G., Jaravine, V.A., Vergoten, G., and Arseniev, A.S. (1995) FEBS Lett.,375, 162–166.Google Scholar
  32. 32.
    Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G., and Hsiao, C.D. (2003) J. Biol. Chem.,278, 21980–21988.Google Scholar
  33. 33.
    Chou, K.-C., Pottle, M., Nemethy, G., Ueda, Y., and Sheraga, H.A. (1982) J. Mol. Biol.,162, 89–112.Google Scholar
  34. 34.
    Herrmann, T., Guntert, P., and Wuthrich, K. (2002) J. Mol. Biol.,319, 209–227.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Feofanov
    • 1
  • G. V. Sharonov
    • 1
  • M. A. Dubinnyi
    • 1
  • M. V. Astapova
    • 1
  • I. A. Kudelina
    • 1
  • P. V. Dubovskii
    • 1
  • D. I. Rodionov
    • 1
  • Yu. N. Utkin
    • 1
  • A. S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations