Biochemistry (Moscow)

, Volume 69, Issue 5, pp 542–551 | Cite as

Cellulase Complex of the Fungus Chrysosporium lucknowense: Isolation and Characterization of Endoglucanases and Cellobiohydrolases

  • F. E. Bukhtojarov
  • B. B. Ustinov
  • T. N. Salanovich
  • A. I. Antonov
  • A. V. GusakovEmail author
  • O. N. Okunev
  • A. P. Sinitsyn


Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), β-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-β-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against β-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified β-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.

cellulase endoglucanase cellobiohydrolase chromatography adsorption saccharification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rabinovich, M. L., Melnick, M. S., and Bolobova, A. V. (2002) Appl. Biochem. Microbiol., 38, 305-321.Google Scholar
  2. 2.
    Sinitsyn, A. P., Gusakov, A. V., and Chernoglazov, V. M. (1995) Bioconversion of Lignocellulose Materials [in Russian], MGU Publishers, Moscow.Google Scholar
  3. 3.
    Bhat, M. K. (2000) Biotechnol. Adv., 18, 355-383.Google Scholar
  4. 4.
    Sinitsyn, A. P., Gusakov, A. V., Grishutin, S. G., Sinitsyna, O. A., and Ankudimova, N. V. (2001) J. Biotechnol., 89, 233-238.Google Scholar
  5. 5.
    Nelson, N. (1944) J. Biol. Chem., 153, 375-379.Google Scholar
  6. 6.
    Somogyi, M. (1952) J. Biol. Chem., 195, 19-23.Google Scholar
  7. 7.
    Dawson, R., Elliott, D., Elliott, W., and Jones, K. (1991) Data for Biochemical Research [Russian translation], Mir, Moscow.Google Scholar
  8. 8.
    Gusakov, A. V., Sinitsyn, A. P., Salanovich, T. N., Bukhtojarov, F. E., Markov, A. V., Ustinov, B. B., van Zeijl, C., Punt, P., and Burlingame, R. (2004) Enzyme Microb. Technol., in press.Google Scholar
  9. 9.
    Henrissat, B. (1991) Biochem. J., 280, 309-316.Google Scholar
  10. 10.
    Henrissat, B., Teeri, T. T., and Warren, R. A. J. (1998) FEBS Lett., 425, 352-354.Google Scholar
  11. 11.
    Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., and Warren, R. A. J. (1991) Microbiol. Rev., 55, 303-315.Google Scholar
  12. 12.
    Lin, D., Tabb, D. L., and Yates, J. R. (2003) Biochim. Biophys. Acta, 1646, 1-10.Google Scholar
  13. 13.
    Gusakov, A. V., Protas, O. V., Chernoglazov, V. M., Sinitsyn, A. P., Kovalysheva, G. V., Shpanchenko, O. V., and Ermolova, O. V. (1991) Biochim. Biophys. Acta, 1073, 481-485.Google Scholar
  14. 14.
    Clarke, A. J. (1997) Biodegradation of Cellulose. Enzymology and Biotechnology, Technomic Publishing Co., Inc., Lancaster-Basel.Google Scholar
  15. 15.
    Schülein, M. (2000) Biochim. Biophys. Acta, 1543, 239-252.Google Scholar
  16. 16.
    Karlsson, J., Siika-aho, M., Tenkanen, M., and Tjerneld, F. (2002) J. Biotechnol., 99, 63-78.Google Scholar
  17. 17.
    Teeri, T. T. (1997) Trends Biotechnol., 15, 160-167.Google Scholar
  18. 18.
    Schülein, M. (1997) J. Biotechnol., 57, 71-81.Google Scholar
  19. 19.
    Stahlberg, J., Johansson, G., and Pettersson, G. (1991) Bio/Technology, 9, 286-290.Google Scholar
  20. 20.
    Wood, T. M., and McCrae, S. I. (1979) Adv. Chem. Ser., 181, 181-209.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • F. E. Bukhtojarov
    • 1
  • B. B. Ustinov
    • 1
  • T. N. Salanovich
    • 1
  • A. I. Antonov
    • 1
  • A. V. Gusakov
    • 1
    Email author
  • O. N. Okunev
    • 2
  • A. P. Sinitsyn
    • 1
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of Sciences, PushchinoMoscow RegionRussia

Personalised recommendations