Biologia Plantarum

, Volume 47, Issue 4, pp 561–568 | Cite as

Structural Changes in Radish Seedlings Exposed to Cadmium

  • A.P. Vitória
  • A.P.M. Rodriguez
  • M. Cunha
  • P.J. Lea
  • R.A. Azevedo


Radish (Raphanus sativus L. cv. Redondo Vermelho) seedlings were analysed by light and scanning electron microscopy to characterize the structural changes caused by the exposure to 0.5 or 1.0 mM cadmium chloride for 24, 48 and 72 h. The analyses showed changes in the anatomical and morphological characteristics of roots, stems and leaves of two-week-old seedlings. In all tissues, pressure potential was decreased. Premature death with the disintegration of the epidermis and an increase in the number of root hairs was observed in roots exposed to Cd. The stem of seedlings exposed to Cd exhibited more cells layers in the cambial region. The main effects observed in leaves in response to Cd were stomatal closure, lack of cell wall thickening and alterations in the shape of the chloroplasts. It is suggested that the structural changes observed in seedlings treated with Cd were mainly caused by a Cd-induced decrease in water uptake.

cell wall heavy metals Raphanus salivus stomata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azevedo, R.A., Alas, R.M., Smith, R.J., Lea, P.J.: Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley.-Physiol. Plant. 104: 280–292, 1998.Google Scholar
  2. Barceló. J., Poschenrieder. C.: Plant water relations as affected by heavy-metals stress.-J. Plant Nutr. 13: 1–37. 1990.Google Scholar
  3. Bergmann, H., Machelett. B., Lippmann, B., Friedrich, Y.: Influence of heavy metals on the accumulation of trimethylglycine, putrescine and spermine in food plants.-Amino Acids 20: 325–329, 2001.Google Scholar
  4. Boussama, N., Ouariti, O., Ghorbal, M.H.: Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress.-J. Plant Nutr. 22: 731–752, 1999.Google Scholar
  5. Cardoso, P.F., Molina, S.M.G., Pereira, G.J.G., Vitória, A.P., Azevedo, R.A.: Response of rice inbred lines to cadmium exposure.-J. Plant Nutr. 25: 927–944, 2002.Google Scholar
  6. Ferreira, R.R., Fornazier, R.F., Vitória, A.P., Lea, P.J., Azevedo, R.A.: Changes in antioxidant enzyme activities in soybean under cadmium stress.-J. Plant Nutr. 25: 327–342, 2002.Google Scholar
  7. Fornazier, R.F., Ferreira, R.R., Pereira, G.J.G., Molina, S.M.G., Smith, R.J., Lea, P.J., Azevedo, R.A.: Cadmium stress in sugar cane callus cultures: Effects on antioxidant enzymes.-Plant Cell Tissue Organ Cult. 71: 125–131, 2002b.Google Scholar
  8. Fornazier. R.F., Ferreira. R.R., Vitória, A.P., Molina, S.M.G., Lea. P.J., Azevedo. R.A.: Effects of cadmium on antioxidant enzyme activities in sugar cane.-Biol. Plant. 41: 91–97. 2002a.Google Scholar
  9. Guelfi. A., Azevedo, R.A., Lea, P.J., Molina, S.M.G.: Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach.-J. gen. appl. Microbiol. 49: 63–74, 2003.Google Scholar
  10. Hart. J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., Kochian, L.V.: Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.-Plant Physiol. 116: 1413–1420, 1998.Google Scholar
  11. Hoagland, D.R., Arnon, D.I.: The water culture method of growing plants without soil.-Calif. Agr. Exp. Sta. Bull. 347: 1–39. 1938.Google Scholar
  12. Hófgen, R., Kreft. O., Willmitzer, L., Hesse. H.: Manipulation of thiol contents in plants.-Amino Acids 20: 291–299, 2001.Google Scholar
  13. Karnowsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.-J. Cell Biol. 27: 137A, 1965.Google Scholar
  14. KevreSan, S., KirSek, S., Kandraó, J., PetroviC, N., Kelemen, Dj.: Dynamics of cadmium distribution in the intercellular space and inside cells in soybean roots, stems and leaves.-Biol. Plant. 46: 85–88, 2003.Google Scholar
  15. Khan, D.H., Duckett, B., Frankland, B., Kirkham, J.B.: An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L.-J. Plant Physiol. 115: 19–28, 1984.Google Scholar
  16. Kupper, H., Lombi, E., Zhao, F.J., McGrath, S.P.: Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.- Planta 212: 75–84, 2000.Google Scholar
  17. Larsson, E.H., Asp, H., Bornman, J.F.: Influence of prior Cd 2+ exposure on the uptake of Cd 2+ and other elements in the phytochelatin-deficient mutant cad 1–3, of Arabidopsis thaliana.- J. exp. Bot. 53: 447–453, 2002.Google Scholar
  18. Lozano, E., Hernandez, L. E., Bonay, P., Carpena Ruiz, R.: Distribution of cadmium in shoot and root tissue of maize and pea plants: physiological disturbances.-J. exp. Bot. 48: 123–128, 1997.Google Scholar
  19. McCarthy, I., Romero-Puertas, M.C., Palma, J.M., Sandalio, L.M., Corpas, F.J., Gómez, M., Del Rio, L.A.: Cadmium induces senescence symptoms in leaf peroxisomes of pea plants.-Plant Cell Environ. 24: 1065–1073, 2001.Google Scholar
  20. McLaughlin, M.J., Singh, B.R. (ed.): Cadmium in Soils and Plants.-Kluwer Academic Publishers, Dordrecht 1999.Google Scholar
  21. Morsch, V.M., Schetinger, M.R.C., Martins, A.F., Rocha, J.B.T.: Effects of cadmium, lead, mercury and zinc on 8-aminolevulinic acid dehydratase activity from radish leaves.-Biol. Plant. 45: 85–89, 2002.Google Scholar
  22. Pereira, G.J.G., Molina, S.M.G., Lea, P.J., Azevedo, R.A.: Activity of antioxidant enzymes in responses to cadmium in Crotalariajuncea.- Plant Soil 239: 123–132, 2002.Google Scholar
  23. Poschenrieder, C., Gunse, B., Barceló, J.: Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves.-Plant Physiol. 90: 1365–1371, 1989.Google Scholar
  24. Prasad, M.N.V.: Cadmium toxicity and tolerance in vascular plants.-Environ. exp. Bot. 35: 525–545, 1995.Google Scholar
  25. Ramos, I., Esteban, E., Lucena, J.J., Grete, A.: Cadmium uptake and subcellular distibuition in plants of Lactuca sp. Cd-Mn interation.-Plant Sci. 162: 761–767, 2002.Google Scholar
  26. Rauser, W.E., Ackerley, C.A.: Localization of cadmium in granules within differentiating and mature root cells.-Can. J. Bot. 65: 634–646, 1987.Google Scholar
  27. Rea, P.: M.R.P.: Subfamily of ABC transporters from plants and yeast.-J. exp. Bot. 50: 895–913, 1999.Google Scholar
  28. Robards, K., Worsfold, J.P.: Cadmium-toxicology and analysis-a review.-Analyst 116: 549–568, 1991.Google Scholar
  29. Romero-Puertas, M.C., Palma, J.M., Gómez, M., Del Rio, L.A., Sandalio, L.M.: Cadmium causes the oxidative modification of proteins in pea plants.-Plant Cell Environ. 25: 677–686, 2002.Google Scholar
  30. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 53: 1351–1365, 2002.Google Scholar
  31. Schützendubel, A., Polle, A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.-J. exp. Bot. 53: 1351–1365, 2002.Google Scholar
  32. Schützendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D.L., Polle, A.: Cadmiuninduced changes in antioxidative systems, hydrogen peroxide content and differentiation in Scots pine roots.-Plant Physiol. 127: 887–898, 2001.Google Scholar
  33. Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants.-Plant Cell Environ. 13: 195–206, 1990.Google Scholar
  34. Vitória, A.P., Lea, P.J., Azevedo, R.A.: Antioxidant enzymes responses to cadmium in radish tissues.-Phytochemistry 57: 701–710, 2001.Google Scholar
  35. Zhao, F.-J., Hamon, R.E., Lombi, E., McLaughlin, M.J., McGrath, S.P.: Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.- J. exp. Bot. 53: 535–543, 2002.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.P. Vitória
    • 1
  • A.P.M. Rodriguez
    • 1
  • M. Cunha
    • 2
  • P.J. Lea
    • 3
  • R.A. Azevedo
  1. 1.Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias AgropecuáriasUniversidade Estadual do Norte Fluminense, Campos dos Goytacazes, CEPRJBrazil, e-mail
  2. 2.Laboratório de Biologia Celular e Tecidual, Centro de Biociências e BiotecnologiaUniversidade Estadual do Norte Fluminense, Campos dos Goytacazes, CEPRJBrazil
  3. 3.Department of Biological SciencesUniversity of LancasterLancaster LA1 4YQUK

Personalised recommendations