Biologia Plantarum

, Volume 48, Issue 2, pp 273–283

Methyl Jasmonate is a Potent Elicitor of Multiple Defense Responses in Grapevine Leaves and Cell-Suspension Cultures

  • V. Repka
  • I. Fischerová
  • K. Šilhárová
Article

Abstract

Treatment with methyl jasmonate (MeJA) stimulates a multicomponent defense response in leaves and suspension-cultured cells of grapevine (Vitis vinifera L. cv. Limberger). MeJA induces development of necrotic lesions, similar to that normally associated with resistance to avirulent pathogens. Sustained exposure of both leaves and cell-suspension cultures to 50 μM MeJA provoked hypersensitive cell death, stimulated medium alkalinization accompanied by massive callose deposition, but did not induce accumulation of hydrogen peroxide from the oxidative burst. Transcripts of genes encoding diverse families of the pathogenesis-related proteins accumulated rapidly after MeJA application, followed by salicylic acid production. After several days systemic accumulation of a large number of defense-associated proteins, including pathogenesis-related proteins, peroxidase, cell wall extensin and enzymes involved in the phenylpropanoid biosynthetic pathway was induced. These cumulative results suggest that grapevine cells that perceived MeJA generated a cascade of events acting at both local and long distances, and causing the sequential and coordinated expression of specific defense responses with a timing and magnitude similar to the typical hypersensitive response against pathogens.

callose deposition defense gene expression PR-proteins salicylic acid Vitis vinifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, A.C., Fluhr, R.: Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells.-Plant Cell 9: 1559-1572, 1997.PubMedCrossRefGoogle Scholar
  2. Anderson, A.J.: The biology of glycoproteins as elicitors.-In: Kosuge, T., Nester, E. W. (ed.): Plant-Microbe Interactions. Molecular Genetic Perspectives. Pp. 87-130. McGraw Hill, New York 1989.Google Scholar
  3. Antoniw, J.F., Pierpoint, W.S.: Purification of tobacco leaf protein associated with resistance to virus infection.-Biochem. Soc. Trans. 6: 248-250, 1978.PubMedGoogle Scholar
  4. Appert, C., Logemann, E., Hahlbrock, K., Schmid, J., Amrhein, N.: Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym).-Eur. J. Biochem. 225: 491-499, 1994.PubMedCrossRefGoogle Scholar
  5. Atkinson, M.M.: Molecular mechanisms of pathogen recognition in plants.-Adv. Plant Pathol. 10: 35-64, 1993.Google Scholar
  6. Baker, C.J., Orlandi, E.W.: Active oxygen in plant pathogenesis.-Annu. Rev. Phytopathol. 33: 299-321, 1995.CrossRefPubMedGoogle Scholar
  7. Baron, C., Zambryski, P.C.: The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme?-Annu. Rev. Genet. 29: 107-129, 1995.PubMedCrossRefGoogle Scholar
  8. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding.-Anal. Biochem 72: 248-254, 1976.PubMedCrossRefGoogle Scholar
  9. Cassab, G.I., Varner, J.E.: Immunocytochemical localization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper.-J. Cell Biol. 105: 2581-2588, 1987.PubMedCrossRefGoogle Scholar
  10. Cohen, Y., Gisi, U., Niderman, T.: Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester.-Phytopathology 83: 1054-1062, 1993.Google Scholar
  11. Creelman, R.A., Mullet, J.E.: Biosynthesis and action of jasmonates in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 355-381, 1997.PubMedCrossRefGoogle Scholar
  12. Currier, H., Strugger, S.: Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L.-Protoplasma 45: 552-559, 1956.CrossRefGoogle Scholar
  13. Darvill, A., Augur, C., Bergmann, C.: Oligosaccharins-oligosaccharides that regulate growth, development and defence-responses in plants.-Glycobiology 2: 181-198, 1992.PubMedGoogle Scholar
  14. Delaney, T.P., Ukness, S., Vernooij, B.: A central role of salicylic acid in plant disease resistance.-Science 266: 1247-1250, 1994.PubMedGoogle Scholar
  15. Dempsey, D.A., Shah, J., Klessig, D.F.: Salicylic acid and disease resistance in plants.-Crit. Rev. Plant Sci. 18: 547-575, 1999.CrossRefGoogle Scholar
  16. Dixon, R.A., Harrison, M.J., Lamb, C.J.: Early events in the activation of plant defense responses.-Annu. Rev. Phytopathol. 32: 479-501, 1994.CrossRefGoogle Scholar
  17. Dong, X.: SA, JA, ethylene, and disease resistance in plants.-Curr. Opinion Plant Biol. 1: 316-323, 1998.CrossRefGoogle Scholar
  18. Ebel, J., Cosio, E.G.: Elicitors of plant defense responses.-Int. Rev. Cytol. 148: 1-36, 1994.Google Scholar
  19. Ebel, J., Scheel, D.: Signals in host-parasite interactions.-In: Tudzynski, C. (ed.): The Mycota. Pp. 85-105. Springer Verlag, Berlin 1997.Google Scholar
  20. Enyedi, A.J., Yalpani, N., Silverman, P., Raskin, I.: Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus.-Proc. nat. Acad. Sci. USA 89: 2480-2484, 1992.PubMedCrossRefGoogle Scholar
  21. Gundlach, H., Muller, M.J., Kutchan, T.M., Zenk, M.H.: Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures.-Proc. nat. Acad. Sci. USA 89: 2398-2393, 1992.CrossRefGoogle Scholar
  22. Guo, A., Salih, G., Klessig, D.F.: Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent.-Plant J. 21: 409-418, 2000.PubMedCrossRefGoogle Scholar
  23. Hiraga, S., Ito, H., Yamakawa, H., Ohtsubo, N., Seo, S., Mitsuhara, I., Matsui, H., Honma, M., Ohashi, Y.: An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon.-Mol. Plant-Microbe Interact. 13: 210-216, 2000.PubMedGoogle Scholar
  24. Hutcheson, S.W.: Current concepts of active defense in plants.-Annu. Rev. Phytopathol. 36: 59-90, 1989.CrossRefGoogle Scholar
  25. Jabs, T., Dietrich, R.A., Dangl, J.L.: Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide.-Science 273: 1853-1856, 1996.PubMedGoogle Scholar
  26. Kauffmann, S., Legrand, M., Geoffroy, P., Fritig, B.: Biological functions of pathogenesis-related proteins: four PR proteins of tobacco have 1,3-β-glucanase activity.-EMBO, J. 6: 3209-3212, 1987.Google Scholar
  27. Kauss, H.: Some aspects of calcium-dependent regulation in plant metabolism.-Annu. Rev. Plant Physiol. 38: 47-72, 1987.CrossRefGoogle Scholar
  28. Keen, N.T.: Gene-for-gene complementarity in plant-pathogen interactions.-Annu. Rev. Genet. 24: 447-463, 1990.PubMedCrossRefGoogle Scholar
  29. Kögel, K.H., Beckhove, U., Dreschers, J., Munch, S., Romme, Y.: Acquired resistance in barley-the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance.-Plant Physiol. 106: 1269-1277, 1994.PubMedGoogle Scholar
  30. Kombrink, E., Somssich, I.E.: Defense responses of plants to pathogens.-In: Andrews, J., Tommerup, I.C. (ed.): Advances in Botanical Research. Vol. 21. Pp. 1-34. Academic Press, London 1995.Google Scholar
  31. Malamy, J., Hennig, J., Klessig, D.F.: Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection.-Plant Cell 4: 359-366, 1992.PubMedCrossRefGoogle Scholar
  32. Malamy, J., Klessig, D. F.: Salicylic acid and plant disease resistance.-Plant J. 2: 643-654, 1992.Google Scholar
  33. Mehdy, M.C., Sharma, Y.K., Sathasivan, K., Bays, N.W.: The role of activated oxygen species in plant disease resistance.-Physiol. Plant. 98: 365-374, 1996.CrossRefGoogle Scholar
  34. Memelink, J., Linthorst, H.J.M., Schilperoort, R.A., Hoge, J.H.: Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins displays different expression patterns.-Plant mol. Biol. 14: 119-126, 1990.PubMedCrossRefGoogle Scholar
  35. Mitchell, A., Walters, D.: Systemic protection in barley against powdery mildew infection using methyl jasmonate.-Aspects appl. Biol. 42: 323-326, 1995.Google Scholar
  36. Nicholson, R.L., Hammerschmidt, R.: Phenolic compounds and their role in disease resistance.-Annu. Rev. Phytopathol. 30: 369-389, 1992.CrossRefGoogle Scholar
  37. Oelofse, D., Dubery, I.A.: Induction of defence responses in cultured tobacco cells by elicitors from Phytophthora nicotianae.-Int. J. Biochem. Cell Biol. 28: 295-301, 1996.PubMedCrossRefGoogle Scholar
  38. Ohtsubo, N., Mitsuhara, I., Koga, M., Seo, S., Ohashi, Y.: Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco.-Plant Cell Physiol. 40: 808-817, 1999.Google Scholar
  39. Olson, P.D., Varner, J.E.: Hydrogen peroxide and lignification.-Plant J. 4: 887-892, 1993.CrossRefGoogle Scholar
  40. Pallas, J.A., Paiva, N.L., Lamb, C., Dixon, R.A.: Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus.-Plant J. 10: 281-293, 1996.CrossRefGoogle Scholar
  41. Preisig, C.L., Kuc, J.A.: Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans (Mont) de Bary.-Arch. Biochem. Biophys. 236: 379-389, 1985.PubMedCrossRefGoogle Scholar
  42. Repka, V.: Intra-and extracellular isoforms of PR-3 class chitinase in virus-infected cucumber plants.-Acta virol. 41: 71-75, 1997.PubMedGoogle Scholar
  43. Repka, V.: Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures.-Biol. Plant. 44: 555-565, 2001.CrossRefGoogle Scholar
  44. Repka, V.: Hydrogen peroxide generated via octadecanoid signaling pathway is neither necessary nor sufficient for methyl jasmonate-induced hypersensitive cell death.-Biol. Plant. 45: 105-115, 2002a.CrossRefGoogle Scholar
  45. Repka, V.: Botrycin and cinerein, two structurally and functionally distinct elicitors of defense responses from a grapevine fungal necrotroph Botrytis cinerea (Pers. et Fries). In: VIIth World Congress of Vine and Wine. P. 33. Bratislava 2002b.Google Scholar
  46. Repka, V., Fischerová, I., Čanigová, K.: Expression of cucumber stress-related anionic peroxidases during flower development or a cryptic infective process.-Biol. Plant. 38: 585-596, 1996.Google Scholar
  47. Repka, V., Fischerová, I., Šilhárová, K.: Methyl jasmonate induces a hypersensitive-like response of grapevine in the absence of avirulent pathogens.-Vitis 40: 5-10, 2001.Google Scholar
  48. Repka, V., Kubíková, J., Fischerová, I.: Immunodetection of PR-1-like proteins in grapevine leaves infected with Oidium tuckeri and in elicited suspension cell cultures.-Vitis 39: 123-127, 2000a.Google Scholar
  49. Repka, V., Slováková, L.: Purification, characterization and accumulation of three virus-induced cucumber peroxidases.-Biol. Plant. 36: 121-132, 1994.CrossRefGoogle Scholar
  50. Repka, V., Štetková, D., Fischerová, I.: The substrate preference and histochemical localization argue against the direct role of cucumber stress-related anionic peroxidase in lignification.-Biol. Plant. 43: 549-585. 2000b.CrossRefGoogle Scholar
  51. Reymond, P., Farmer, E.E.: Jasmonate and salicylate as global signals for defense gene expression.-Curr. Opinion Plant Biol. 1: 404-411, 1998.CrossRefGoogle Scholar
  52. Ricci, P., Panabiéres, F., Bonnet, P., Maya, N., Ponchet, M., Devergnes, J.-C., Marais, A., Cardin, L., Millat, M.-L., Blein, J.-P.: Proteinaceous elicitors of plant defense response.-In: Fritig, B., Legrand, M. (ed.): Mechanisms of Plant Defense Responses. Pp. 121-135. Kluwer Academic Publishers, Dordrecht 1993.Google Scholar
  53. Scheel, D.: Resistance response physiology and signal transduction.-Curr. Opinion Plant Biol. 1: 305-310, 1998.CrossRefGoogle Scholar
  54. Schweizer, P., Gees, R.E.M., Mosinger, E.: Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f. sp. hordei.-Plant Physiol. 102: 503-511, 1993.PubMedGoogle Scholar
  55. Sticher, L., Mauch-Mani, B., Métraux, J.-P.: Systemic acquired resistance.-Annu. Rev. Phytopathol. 35: 325-370, 1997.CrossRefGoogle Scholar
  56. Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., Broekaert, W.F.: Separate jasmonate-dependent and salicylate-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens.-Proc. nat. Acad. Sci. USA 95: 15107-15111, 1998.CrossRefPubMedGoogle Scholar
  57. Van Tunen, A. J, Mol, J. N.: A novel purification procedure for chalcone flavanone isomerase from Petunia hybrida and the use of its antibodies to characterize the Po mutation.-Arch. Biochem. Biophys. 257: 85-91, 1987.PubMedCrossRefGoogle Scholar
  58. Vijayan, P., Shockey, J., Lévesque, C.A., Cook, R.J., Browse, J.: A role for jasmonate in pathogen defense of Arabidopsis.-Proc. nat. Acad. Sci. USA 95: 7209-7214, 1998.PubMedCrossRefGoogle Scholar
  59. Yang, Y., Shah, J., Klessig, D.F.: Signal perception and transduction in plant defense responses.-Genet. Develop. 11: 1621-1639, 1997.Google Scholar
  60. Yano, A., Suzuki, K., Uchimya, H., Shinshi, H.: Induction of hypersensitive cell death by a fungal protein in cultures of tobacco cells.-Mol. Plant-Microbe Interact. 11: 115-123, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • V. Repka
    • 1
  • I. Fischerová
    • 1
  • K. Šilhárová
    • 1
  1. 1.Laboratory of Molecular Biology and VirologyResearch Institute of Viticulture and Enology (CRIVE)BratislavaSlovakia

Personalised recommendations