Biologia Plantarum

, Volume 47, Issue 3, pp 347–354 | Cite as

Transgenic Tobacco Plants Constitutively Overexpressing a Rice Thaumatin-like Protein (PR-5) Show Enhanced Resistance to Alternaria alternata

  • R. Velazhahan
  • S. Muthukrishnan

Abstract

Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen.

disease resistance Nicotiana tabacum pathogenesis-related proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, G.: Binary Ti vectors for plant transformation and promoter analysis.-Methods Enzymol. 153: 292–305, 1987.Google Scholar
  2. Ausubel, F.M, Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K.: Current Protocols in Molecular Biology.-John Wiley and Sons, New York 1987.Google Scholar
  3. Bent, A.F., Yu, I.: Applications of molecular biology to plant disease and insect resistance.-Adv. Agron. 66: 251–298, 1999.Google Scholar
  4. Bol, J.F., Linthorst, H.J.M., Cornelissen, B.J.C.: Plant pathogenesis-related proteins induced by virus infection.-Annu. Rev. Phytopathol. 28: 113–138, 1990.CrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  6. Cammue, B.P.A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proost, P., Van Damme, J., Osborn, R.W., Guerbette, F., Kader, J.C., Broekaert, W.F.: A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.-Plant Physiol. 109: 445–455, 1995.PubMedCrossRefGoogle Scholar
  7. Carmona, M.J., Hernandez-Lucas, C., San Martin, C., Gonzalez, P., Garcia-Olmedo, F.: Subcellular localization of type I thionins in the endosperm of wheat and barley.-Protoplasma 173: 1–7, 1993.CrossRefGoogle Scholar
  8. Chen, W.P., Chen, P.D., Liu, D.J., Kynast, R., Friebe, B., Velazhahan, R., Muthukrishnan, S., Gill, B.S.: Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene.-Theor. appl. Genet. 99: 755–760, 1999.CrossRefGoogle Scholar
  9. Choi, Y.O., Cheong, N.E., Kim, W.Y., Lee, K.O., Moon, H.J., Cho, M.J., Lee, S.Y.: Isolation and biochemical properties of an antifungal thaumatin-like protein from flower buds of Chinese cabbage.-Korean J. Plant Pathol. 13: 386–393, 1997.Google Scholar
  10. Cornelissen, B.J.C., Melchers, L.S.: Strategies for control of fungal diseases with transgenic plants.-Plant Physiol. 101: 709–712, 1993.PubMedGoogle Scholar
  11. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G.S., Muthukrishnan, S., Datta, S.K.: Overexpression of cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease.-Theor. appl. Genet. 98: 1138–1145, 1999.CrossRefGoogle Scholar
  12. Dore, I., Legrand, M., Cornelissen, B.J.C., Bol, J.F.: Subcellular localization of acidic and basic PR proteins in tobacco mosaic virus-infected tobacco.-Arch. Virol. 120: 97–107, 1991.PubMedCrossRefGoogle Scholar
  13. Fromm, M.E., Taylor, L.P., Walbot, V.: Stable transformation of maize after gene transfer by electroporation.-Nature 319: 791–793, 1986.PubMedCrossRefGoogle Scholar
  14. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T.: A simple and general method for transferring genes into plants.-Science 227: 1229–1231, 1985.Google Scholar
  15. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.-EMBO J. 6: 3901–3907, 1987.PubMedGoogle Scholar
  16. Jongedijk, E., Tigelaar, H., Van Roekel, J.S.C., Bres-Vloemans, S.A., Dekker, I., Van den Elzen, P.J.M., Cornelissen, B.J.C., Melchers, L.S.: Synergistic activity of chitinases and beta-1,3–glucanases enhances fungal resistance in transgenic tomato plants.-Euphytica 185: 173–180, 1995.Google Scholar
  17. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.-Nature 277: 680–684, 1970.CrossRefGoogle Scholar
  18. Leah, R., Tommerup, H., Svendsen, I., Mundy, J.: Biochemical and molecular characterization of three barley seed proteins with antifungal properties.-J. biol. Chem. 266: 1564–1573, 1991.PubMedGoogle Scholar
  19. Linthorst, H.J.M., Van Loon, L.C., Van Rossum, C.M.A., Mayer, A., Bol, J.F., van Roeckel, J.S.C., Meulenhoff, E.J.S., Cornelissen, B.J.C.: Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco.-Mol. Plant-Microbe Interact. 3: 252–258, 1990.PubMedGoogle Scholar
  20. Liu, D., Raghothama, K.G., Hasegawa, P.M., Bressan, R.A.: Osmotin overexpression in potato delays development of disease symptoms.-Proc. nat. Acad. Sci. USA 91: 1888–1892, 1994.PubMedCrossRefGoogle Scholar
  21. Liu, D., Rhodes, D., D'Urzo, M.P., Xu, Y., Narasimhan, M.L., Hasegawa, P.M., Bressan, R.A., Abad, L.: In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix.-Plant Sci. 121: 123–131, 1996.CrossRefGoogle Scholar
  22. Lorito, M., Woo, S.L., Fernandez, I.G., Colucci, G., Harman, G.E., Pintor-Toro, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S., Scala, F.: Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens.-Proc. nat. Acad. Sci. USA 95: 7860–7865, 1998.PubMedCrossRefGoogle Scholar
  23. Murray, M.G., Thompson, W.F.: Rapid isolation of high molecular weight plant DNA.-Nucl. Acids Res. 8: 4321–4325, 1980.PubMedGoogle Scholar
  24. Parent, J.G., Asselin, A.: Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus.-Can. J. Bot. 62: 564–569, 1984.Google Scholar
  25. Punja, Z.K.: Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects.-Can. J. Plant Pathol. 23: 216–235, 2001.CrossRefGoogle Scholar
  26. Roberts, W.K., Selitrennikoff, C.P.: Zeamatin, an antifungal protein from maize with membrane permeabilizing activity.-J. gen. Microbiol. 136: 1771–1778, 1990.Google Scholar
  27. Rogers, S.G., Horsch, R.B., Fraley, R.T.: Gene transfer in plants: Production of transformed plants using Ti-plasmid vectors.-Methods Enzymol. 118: 627–640, 1986.CrossRefGoogle Scholar
  28. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual.-Cold Spring Harbor Laboratory Press, Cold Spring Harbor-New York 1989.Google Scholar
  29. Swegle, M., Kramer, K.J., Muthukrishnan, S.: Properties of barley seed chitinases and release of embryo-associated isoforms during early stages of imbibition.-Plant Physiol. 99: 1009–1014, 1992.PubMedCrossRefGoogle Scholar
  30. Terras, F.R.G., Schoofs, H., De Bolle, M.F.C., Van Leuven, F., Rees, S.B., Vanderleyden, J., Cammue, B.P.A., Broekaert, W.F.: Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds.-J. biol. Chem. 267: 15301–15309, 1992.PubMedGoogle Scholar
  31. Velazhahan, R., Cole, K.C., Anuratha, C.S., Muthukrishnan, S.: Induction of thaumatin-like proteins (TLPs) in Rhizoctonia solani-infected rice and characterization of two new cDNA clones.-Physiol. Plant. 102: 21–28, 1998.CrossRefGoogle Scholar
  32. Velazhahan, R., Datta, S.K., Muthukrishnan, S.: The PR-5 family: thaumatin-like proteins.-In: Datta, S.K, Muthukrishnan, S. (ed.): Pathogenesis-Related Proteins in Plants. Pp. 107–129. CRC Press, Boca Raton 1999.Google Scholar
  33. Velazhahan, R., Jayaraj, J., Jeoung, J.M., Liang, G.H., Muthukrishnan, S.: Purification and characterization of an antifungal thaumatin-like protein from sorghum (Sorghum bicolor) leaves.-J. Plant Dis. Protect. 109: 452–461, 2002.Google Scholar
  34. Velazhahan, R., Jayaraj, J., Liang, G.H., Muthukrishnan, S.: Partial purification and N-terminal amino acid sequencing of a β-1,3–glucanase from sorghum (Sorghum bicolor) leaves.-Biol. Plant. 46: 29–33, 2003.CrossRefGoogle Scholar
  35. Velazhahan, R., Radhajeyalakshmi, R., Thangavelu, R., Muthukrishnan, S.: An antifungal protein purified from pearl millet seeds shows sequence homology to lipid transfer proteins.-Biol. Plant. 44: 417–421, 2001.CrossRefGoogle Scholar
  36. Velazhahan, R., Samiyappan, R., Vidhyasekaran, P.: Purification of an elicitor-inducible antifungal chitinase from suspension-cultured rice cells.-Phytoparasitica 28: 131–139, 2000.Google Scholar
  37. Vigers, A.J., Roberts, W.K., Selitrennikoff, C.P.: A new family of plant antifungal proteins.-Mol. Plant-Microbe Interact. 4: 315–323, 1991.PubMedGoogle Scholar
  38. Vigers, A.J., Wiedemann, S., Roberts, W.K., Legrand, M., Selitrennikoff, C.P., Fritig, B.: Thaumatin-like pathogenesis-related proteins are antifungal.-Plant Sci. 83: 155–161, 1992.CrossRefGoogle Scholar
  39. Winston, S., Fuller, S., Hurrel, J.: Current Protocols in Molecular Biology.-John Wiley and Sons, New York 1987.Google Scholar
  40. Ye, X.Y., Wang, H.X., Ng, T.B.: First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity.-Biochem. biophys. Res. Commun. 263: 130–134, 1999.PubMedCrossRefGoogle Scholar
  41. Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A., Lamb, C.J.: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco.-Biotechnology 12: 807–812, 1994.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Velazhahan
    • 1
  • S. Muthukrishnan
    • 2
  1. 1.Department of Plant Pathology, Agricultural College and Research InstituteTamil Nadu Agricultural University, MaduraiTamil NaduIndia
  2. 2.Department of BiochemistryKansas State UniversityManhattanUSA

Personalised recommendations