Advertisement

Biologia Plantarum

, Volume 47, Issue 2, pp 237–242 | Cite as

Effects of Phytoplasma Infection on Pigments, Chlorophyll-Protein Complex and Photosynthetic Activities in Field Grown Apple Leaves

  • M. Bertamini
  • M.S. Grando
  • N. Nedunchezhian
Article

Abstract

Changes in contents of pigments, chlorophyll-protein complex, and photosynthetic activities were investigated in field grown apple (Malus pumila Mill.) leaves infected by Apple Proliferation phytoplasma. The contents of chlorophyll a+b (Chl) and carotenoids (Car) markedly decreased in infected leaves. Similar results were also observed for content of total soluble proteins and ribulose-1,5-bisphosphate carboxylase activity. When various photosynthetic activities were followed in isolated thylakoids, phytoplasma infection caused a marked inhibition of whole chain and photosystem 2 (PS2) activity. Smaller inhibition of photosystem 1 (PS1) activity was observed even in severely infected leaves. The artificial exogenous electron donors, MnCl2 diphenyl carbazide, and NH2OH, did not restore the loss of PS2 activity in both mildly and severely infected leaves. Similar results were obtained by Chl fluorescence measurements. The marked loss of PS2 activity in infected leaves was due to the reduction of contents of chlorophyll and light-harvesting chlorophyll-protein 2 complexes.

carotenoids electron transport photosystem proteins ribulose-1,5-bisphosphate carboxylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allakhverdiev, S.I., Šetlíková, E., Klimov, V.V., Šetlík, I.: In photoinhibited photosystem II particles pheophytin photoreduction remains unimpaired.-FEBS Lett. 226: 186-190, 1987.CrossRefGoogle Scholar
  2. Anderson, J.M., Waldron, J.C., Thorne, S.: Chlorophyll-protein complexes of spinach and barley thylakoids spectral characterization of six complexes resolved by an improved electrophoretic procedure.-FEBS Lett. 92: 227-233, 1978.CrossRefGoogle Scholar
  3. Bassi, R., Simpson, D.: The organization of photosystem II chlorophyll-protein.-In: Biggins, J. (ed.): Progress in Photosynthesis Research. Pp. 81-88, Martinus Nijhoff Publ., Dodrecht-Boston-Lancaster 1987.Google Scholar
  4. Bertamini, M., Nedunchezhian, N.: Effects of phytoplasma [stolbur-subgroup (Bois-noir-BN)] on photosynthetic pigments, saccharides, ribulose 1,5-bisphosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves.-Photosynthetica 39: 119-122, 2001.CrossRefGoogle Scholar
  5. Berthhold, D.A., Babcock, G.T., Yocum, C.A.: Highly resolved O2 evolving photosystem II preparation from spinach thylakoid membranes.-FEBS Lett. 134: 231-234, 1981.CrossRefGoogle Scholar
  6. Bornman, J.F.: Target sites of UV-B radiation in photosynthesis of higher plants.-J. Photochem. Photobiol. 4: 145-158, 1989.CrossRefGoogle Scholar
  7. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976.PubMedCrossRefGoogle Scholar
  8. Catlin, P.B., Olsson, E.A., Beutel, J.A.: Reduced translocation of carbon and nitrogen from leaves with symptoms of pear curl.-J. amer. Soc. hort. Sci. 100: 184-187, 1975.Google Scholar
  9. Frisinghelli, C.L., Delaiti, L., Grando, M.S., Forti, D., Vindimian, M.E.: CacoPSIlla costalis (Flor, 1981) as a vector of Apple Proliferation in Trentino.-J. Phytopathol. 148: 425-431, 2000.CrossRefGoogle Scholar
  10. Green, B.R.: The chlorophyll-protein complexes of higher plant photosynthetic membranes or just what green band is that?-Photosynth. Res. 15: 30-32, 1988.CrossRefGoogle Scholar
  11. Jarausch, W., Saillard, C., Helliot, B., Garnier, M., Dosba, F.: Genetic variability of Apple Proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment.-Mol. cell. Problems 14: 17-24, 2000.CrossRefGoogle Scholar
  12. Kartte, S., Seemuller, E.: Histopathology of apple proliferation in malus taxa and hybrids of different susceptibility.-J. Phytopathol. 131: 149-160, 1991.Google Scholar
  13. Kison, H., Schneider, B., Seemuller, E.: Restriction fragment length polymorphisms within the apple proliferation mycoplasma-like organism.-J. Phytopathol. 141: 395-401, 1994.Google Scholar
  14. Lee, I.M., Bertaccini, A., Vibio, M., Gunderson, D.E.: Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy.-Phytopathology 85: 728-735, 1995.Google Scholar
  15. Lepka, P., Stitt, M., Moll, E., Seemuller, E.: Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco.-Physiol. mol. Plant Pathol. 55: 59-68, 1999.CrossRefGoogle Scholar
  16. Lichtenthaler, H.K.: Chlorophylls and carotenoids-the pigments of photosynthetic biomembranes.-Methods Enzymol. 148: 350-382, 1987.Google Scholar
  17. Marzachi, C., Alma, A., Aquilio, M.D., Minuto, G., Boccardo, G.: Detection and identification of phytoplasmas infecting cultivated and wild plants in Liguria (Italian Riviera).-J. Plant Pathol. 81: 127-136, 1999.Google Scholar
  18. McCoy, R.E., Caudwell, A., Chang, C.J., Chen, T.A., Chiykowski, L.N., Cousin, M.T., Dale, J.L., de Leeuw, G.T.N., Golono, D.A., Hackett, K.J., Kirkpatrick, B.C., Marwitz, R., Petzold, H., Sinha, R.C., Sugiura, M., Whitcomb, R.F., Yang, I.L., Zhu, B.M., Seemuller, E.: Plant diseases associated with mycoplasma-like organisms.-In: Whitcomb, R.F., Tully, J.G. (ed.): Mycoplasma. Pp. 545-640. Academic Press, San Diego 1989.Google Scholar
  19. Metz, J.G., Kruger, R.W., Miles, D.: Chlorophyll-protein complexes of a photosystem II mutant of maize.-Plant Physiol. 75: 238-241, 1984.PubMedCrossRefGoogle Scholar
  20. Nedunchezhian, N., Kulandaivelu, G.: Effect of enhanced radiation on ribulose-1,5-bisphosphate carboxylase in leaves of Vigna sinensis L-Photosynthetica 25: 231-435, 1991.Google Scholar
  21. Nedunchezhian, N., Kulandaivelu, G.: Effects of Cd and UV-B radiation on polypeptide composition and photosynthetic activities of Vigna unguiculata chloroplasts.-Biol. Plant. 37: 437-441, 1995.Google Scholar
  22. Nedunchezhian, N., Morales, F., Abadia, A., Abadia, J.: Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient peach (Prunus persica L.).-Plant Sci. 129: 29-38, 1997.CrossRefGoogle Scholar
  23. Poggi-Pollini, C., Bissani, R., Giunchedi, L., Vindimian, E.: First report of phytoplasma infection in olive trees (Olea europaea L.).-J. Phytopathol. 144: 109-111, 1996.Google Scholar
  24. Seemuller, E.C., Marcone, C., Lauer, U., Ragozzino, A., Goschl, M.: Current status of molecular classification of the phytoplasmas.-J. Plant Pathol. 80: 3-26, 1998.Google Scholar
  25. Šesták, Z.: Limitations for finding linear relationship between chlorophyll content and photosynthetic activity.-Biol. Plant. 8: 336-346, 1966.CrossRefGoogle Scholar
  26. Šetlík, I., Allakhverdiev, S.I., Nedbal, L., Šetlíková, L., Klimov, V.V.: Three types of photosystem II photoinactivation.-Photosynth. Res. 23: 39-48, 1990.CrossRefGoogle Scholar
  27. Wydrzynski, T., Govindjee: A new site of bicarbonate effect in photosystem II of photosynthesis: Evidence from chlorophyll fluorescence transients in spinach chloroplasts.-Biochim. biophys. Acta 387: 403-408, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Bertamini
    • 1
  • M.S. Grando
    • 1
  • N. Nedunchezhian
    • 1
  1. 1.Istituto Agrario di San Michele all' AdigeSan Michele all' AdigeItaly

Personalised recommendations