Biologia Plantarum

, 47:227 | Cite as

Impact of CO2 Enrichment and Variable Nitrogen Supplies on Composition and Partitioning of Essential Nutrients of Wheat

  • Madan Pal
  • L.S. Rao
  • A.C. Srivastava
  • V. Jain
  • U.K. Sengupta


This study was conducted to determine effects of nitrogen supply (75 and 150 kg(N) ha−1) and CO2 enrichment on partitioning of macro and micro nutrients in wheat (Triticum aestivum L. cv. HD-2285). Plants were grown from seedling emergence to maturity inside open top chambers under ambient CO2 (CA, 350 ± 50 μmol mol−1) and elevated CO2 (CE, 600 ± 50 μmol mol−1). Leaves, stems and roots of the same physiological age were analyzed for carbon, nitrogen, calcium, copper, iron, zinc and manganese content at 40, 60 and 90 d after germination. C, Cu, Mn and Zn content was higher in the stem, leaves and roots on dry mass basis under CE than CA. However, N and Fe contents decreased in CE grown plants. Ca content was unaffected due to CE and variable N supplies.

calcium carbon copper iron manganese nitrogen Triticum aestivum zinc 


  1. Aben, S.K., Ghannown, O., Conroy, J.P.: Nitrogen requirements for maximum growth and photosynthesis of rice Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO2.-Aust. J. Plant Physiol. 26: 759-766, 1999.Google Scholar
  2. Baxter, R., Gantley, M., Ashenden, T.W., Farrar, J.F.: Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use.-J. exp. Bot. 45: 1267-1278, 1994.Google Scholar
  3. Bhargava, B.S., Raghupathi, H.B.: Analysis of plant materials for macro and micronutrients.-In: Tandon, H.L.S. (ed.): Methods of Analysis of Soils, Plants, Water and Fertilizers. Pp. 49-82. Fertilizer Dev. Consul. Org., New Delhi 1993.Google Scholar
  4. Broker, F.L., Shafer, S.R., Wei, C.M., Horton, S.J.: CO2 enrichment and N fertilization effects on cotton plant residue chemistry and decomposition.-Plant Soil 220: 89-98, 2000.CrossRefGoogle Scholar
  5. Campbell, W.J., Allen, L.H., Jr., Bower, G.: Effects of CO2 concentration on Rubisco activity, amount and photosynthesis in soybean leaves.-Plant Cell Environ. 14: 807-818, 1988.Google Scholar
  6. Conroy, J.P., Milham, P.J., Barlow, E.W.R.: Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO2.-Plant Cell Environ. 15: 843-847, 1992.CrossRefGoogle Scholar
  7. Demmers-Derks, H., Mitchell, R.A.G., Mitchell, V.J., Lawlor, D.W.: Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications.-Plant Cell Environ. 21: 829-836, 1998.CrossRefGoogle Scholar
  8. Drake, B.G., Gonzalez-Meler, M.A., Long, S.P.: More efficient plants: a consequence of elevated carbon dioxide?-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 607-640, 1997.CrossRefGoogle Scholar
  9. Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., Stitt, M.: The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco.-Plant Cell Environ. 22: 1177-1183, 1999.CrossRefGoogle Scholar
  10. Gorissen, A., Cotrufo, M.F.: Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply.-Plant Soil 224: 75-84, 2000.CrossRefGoogle Scholar
  11. Griffin, K.L., Luo, Y.: Sensitivity and acclimation of Glycine max (L.) Merr. Leaf gas exchange to CO2 partial pressure.-Environ. exp. Bot. 42: 141-153, 1999.CrossRefGoogle Scholar
  12. Hocking, P.J., Meyer, C.P.: Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize.-Aust. J. Plant Physiol. 18: 339-356, 1991.CrossRefGoogle Scholar
  13. Manderscheid, R., Bender, J., Jager, H.J., Weigel, H.J.: Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality.-Agr. Ecosyst. Environ. 54: 175-185, 1995.CrossRefGoogle Scholar
  14. Monje, O., Bugbee, B.: Adaptation to high CO2 concentration in an optimal environment; radiation capture, canopy quantum yield and carbon use efficiency.-Plant Cell Environ. 21: 315-324, 1998.PubMedCrossRefGoogle Scholar
  15. Panse, V.G., Sukhatme, P.T. (ed.): Statistical Methods for Agricultural Workers.-Indian Council of Agricultural Research, New Delhi 1967.Google Scholar
  16. Reeves, D.W., Rogers, H.H., Prior, S.A., Wood, C.W., Runion, G.B.: Elevated atmospheric CO2 effects on sorghum and soybean nutrient status.-J. Plant Nutr. 17: 1939-1954, 1994.CrossRefGoogle Scholar
  17. Rogers, G.S., Milham, P.J., Thiband, M.C., Conroy, J.P.: Interaction between rising CO2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration.-Aust. J. Plant Physiol. 23: 119-125, 1996.Google Scholar
  18. Sage, R.F., Sharkey, T.D., Seeman, J.R.: The in vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L.-Planta 174: 407-416, 1988.CrossRefGoogle Scholar
  19. Schaffer, B., Whiley, A.W., Searle, C., Nissen, R.J.: Leaf gas exchange, dry matter partitioning, and mineral element concentrations in mango as influenced by elevated atmospheric carbon dioxide and root restriction.-J. amer. Soc. hort. Sci. 122: 849-855, 1997.Google Scholar
  20. Srivastava, A.C., Pal, M., Sengupta, U.K.: Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2.-Biol. Plant. 45: 395-399, 2002.CrossRefGoogle Scholar
  21. Srivastava, A.C., Sengupta, U.K., Pal, M.: Growth, CO2 exchange rate and dry matter partitioning in mungbean grown under elevated CO2.-Indian J. exp. Biol. 39: 572-577, 2001.PubMedGoogle Scholar
  22. Theobald, J.C., Michell, R.A.C., Parry, M.A.J., Lawlor, D.W.: Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2.-Plant Physiol. 118: 945-955, 1998.PubMedCrossRefGoogle Scholar
  23. Ulman, P., Čatský, J., Pospíšilová, J.: Photosynthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration.-Biol. Plant. 43: 227-237, 2000.CrossRefGoogle Scholar
  24. Van Ginkel, J.H., Gorissen, A., Van Veen, A.: Carbon and nitrogen allocation in lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics.-Plant Soil 188: 299-308, 1997.CrossRefGoogle Scholar
  25. Walkley, A., Black, C.A.: An examination of Degjareff methods for determining soil organic matter and proposed modification of the chromic acid titration method.-Soil Sci. 37: 29-38, 1934.Google Scholar
  26. Wong, S.C.: Elevated atmospheric partial pressure of CO2 and plant growth. II. Interaction of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants.-Oecologia 44: 68-74, 1979.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Madan Pal
    • 1
  • L.S. Rao
    • 1
  • A.C. Srivastava
    • 2
  • V. Jain
    • 1
  • U.K. Sengupta
    • 1
  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Sher-e-Kashmir University of Agricultural Sciences and TechnologyRS Pura, JammuIndia

Personalised recommendations