Biogeochemistry

, Volume 69, Issue 1, pp 37–62 | Cite as

The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change

  • Edward B. Rastetter
  • Bonnie L. Kwiatkowski
  • Séverine Le Dizès
  • John E. Hobbie
Article

Abstract

The down-slope movement of water and nutrients should link plant and soil processes along hill slopes. This linkage ought to be particularly strong in Arctic ecosystems where permafrost confines flowing water near the surface. We examined whether these hill-slope processes are important in assessments of the responses of Arctic tundra to changes in CO2 and climate using the Marine Biological Laboratory–General Ecosystem Model. Because higher rates of water flow decrease the distance over which nutrients must diffuse to the roots, down-slope vegetation is more productive under current conditions. In response to elevated CO2 and a warmer, wetter climate, the relative increase in carbon stored in vegetation and soils was higher uphill, but the absolute increase was higher downhill. Very little of the increase in carbon anywhere on the hill slope resulted from an increase in total ecosystem nitrogen. Instead, the increases were associated with increases in vegetation C:N ratio (woodiness) and with the redistribution of nitrogen from soils (low C:N) to vegetation (high C:N). Because these changes are fueled by nitrogen already in place, the down-slope movement of nitrogen does not appear to be a major determinant of the responses of Arctic tundra to changes in CO2 and climate.

Carbon–nitrogen interactions Climate change Ecosystem model Hill-slope processes Scaling Spatial interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendinger J.E. and Leete J.H. 1998. Regional and local hydrogeology of calcareous fens in the Minnesota River Basin, USA. Wetlands 18: 184–202.Google Scholar
  2. Arctic LTER 2002. Online data base. Web site: http://ecosystems.mbl.edu/ARC/Google Scholar
  3. Beven K.J. and Kirkby M.J. 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24: 43–69.Google Scholar
  4. Beven K.J. and Wood E.F. 1983. Catchment geomorphology and the dynamics of runoff contributing areas. J. Hydrol. 65: 139–158.Google Scholar
  5. Billings W.D., Luken J.O., Mortensen D.A. and Peterson K.M. 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment. Oecologia 53: 7–11.Google Scholar
  6. Bliss L.C. and Matveyeva N.V. 1992. Circumpolar arctic vegetation. In: Chapin F.S. III, Jefferies R.L., Reynolds J.F., Shaver G.R. and Svoboda J. (ed) Arctic Ecosystems in a Changing Climate. Academic Press, New York, pp. 59–90.Google Scholar
  7. Bridgham S.D., Ping C.-L., Richardson J.L. and Updegraff K. 2001. Soils of northern peatlands: histosols and gelisols. In: Richardson J.L. and Vepraskas M.J. (eds) Wetland Soils, Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Boca Raton, pp. 343–370.Google Scholar
  8. Bristow K.L. and Campbell G.S. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 31: 159–166.Google Scholar
  9. Chapin F.S. III and Shaver G.R. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564–576.Google Scholar
  10. Chapin F.S. III and Shaver G.R. 1996. Physiological and growth responses of arctic plants to a field experiment stimulating climatic change. Ecology 77: 822–840.Google Scholar
  11. Chapin F.S. III, Miller P.C., Billings W.D. and Coyne P.I. 1980. Carbon and Nutrient budgets and their control in costal tundra. In: Brown J., Miller P.C., Tieszen L.L. and Bunnell F.L. (eds) An arctic ecosystem: The coastal tundra at Barrow, Alaska. US/IBP synthesis Series 12, Dowden, Hutchinson, and Ross, Inc., Stroudsburg, Pennsylvania, USA, pp. 458–482Google Scholar
  12. Chapin F.S. III, Fetcher N., Kielland K., Everett K.R. and Linkins A.E. 1988. Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69: 693–702.Google Scholar
  13. Chapin F.S. III, Shaver G.R., Giblin A.E., Nadelhoffer K.J. and Laundre J.A. 1995. Responses of arctic tundra to experimental and observed changes to climate. Ecology 76: 694–711.Google Scholar
  14. Cramer W., Kicklighter D.W., Bondeau A., Moore B. III, Churkina G., Nemry B., Ruimy A., Schloss A.L. and the participants of the Potsdam NPP model intercomparison. 1999. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global ChangeBiol. 5(Suppl 1): 25–34.Google Scholar
  15. Enting I., Wigley T. and Heimann M. 1994. Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Technical Paper, 31, 120 p.Google Scholar
  16. Flanagan P.W. and Veum A.K. 1974. Relationship between respiration, weight loss, temperature and moisture in organic residues on tundra. In: Holding.J., Heal O.W., Maclean S.F. Jr. and Flanagan P.W. (eds) Soil Organisms and Decomposition in Tundra. Swedish IBP Committee, pp. 249–277.Google Scholar
  17. Funk D.W., Pullman E.R., Peterson K.M., Crill P.M. and Billings W.D. 1994. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms. Global Biogeochem. Cycles 8: 271–278.Google Scholar
  18. Giblin A.E., Nadelhoffer K.J., Shaver G.R., Laundre J.A. and McKerrow A.J. 1991. Biogeochemical diversity along a riverside toposequence in artic Alaska. Ecol. Monogr. 61: 415–435.Google Scholar
  19. Gough L., Shaver G.R., Carroll J., Royer D. and Laundre J.A. 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J. Ecol. 88: 54–66.Google Scholar
  20. Grulke N.E., Riechers G.H., Oechel W.C., Hjelm U. and Jaeger C. 1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494.Google Scholar
  21. Hastings S.J., Luchessa S.A., Oechel W.C. and Tenhunen J.D. 1989. Standing biomass and production in water drainages of the foothills of the Philip Smith Mountains, Alaska. Holarctic Ecol. 12: 304–311.Google Scholar
  22. Hobbie S.E. and Chapin F.S. III 1998. The response of tundra plant biomass, aboveground production, nitrogen and CO2 flux to experimental warming. Ecology 79: 1526–1544.Google Scholar
  23. Hobbie J.E., Kwiatkowski B.L., Rastetter E.B., Walker D.A. and McKane R.B. 1998. Carbon cycling in the Kuparuk basin: plant production, carbon storage, and sensitivity to future changes. J. Geophys. Res. 103: 29,065–29,073.Google Scholar
  24. Hornberger G.M., Bencala K.E. and McKnight D.M. 1994. Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25: 147–165.Google Scholar
  25. Hulme M. 1995. A historical monthly precipitation data set for global land areas from 1900 to 1994 gridded at 3.75 x 2.5 resolution. Climate Research Unit, University of East Anglia, Norwich, UKGoogle Scholar
  26. Jenkins J.C., Kicklighter D.W., Ollinger S.V., Aber J.D. and Melillo J.M. 1999. Sources of variability in net primary production predictions at a regional scale: a comparison using PnET-II and TEM 4.0 in northeastern US forests. Ecosystems 2: 55–570.Google Scholar
  27. Johnson L.C., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Rastetter E.B., Laundre J.A. and Murray G.L. 1996. Effects of drainage and temperature on carbon balance of tussock tundra microcosms. Oecologia 108: 737–748.Google Scholar
  28. Jones P.D. 1994. Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J. Climate 7: 1794–1802.Google Scholar
  29. Kane D. 1997. The impact of hydrologic perturbations on Arctic ecosystems induce by climate change. In: Oechel W.C., Callaghan T., Gilnanov T., Holten J.I., Maxwell B., Molau U. and Sveinbjornsson B. (eds) Global Change and Arctic Terrestrial Ecosystems. Springer, New York, pp. 63–81.Google Scholar
  30. Kane D.L. and Hinzman D. 1998. Meteorologic and hydrologic data sets, Kuparuk River Watershed, northern Alaska, USA. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO, USA. Digital Media. http://nsidc.org/data/catalog.htmlGoogle Scholar
  31. Kling G.W., Kipphut G.W., Miller M.C. and O'Brien W.J. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biol. 43: 477–497.Google Scholar
  32. Le Dizés S., Kwiatkowski B.L., Rastetter E.B., Hope A., Hobbie J.E., Stow D. and Daeschner S. 2003. Modeling biogeochemical responses of tundra ecosystems to temporal and spatial variations in climate in the Kuparuk River Basin (Alaska). J. Geophys. Res. Atmos. 108 (D2): 8165, doi: 10.1029/2001JD000960.Google Scholar
  33. Legates D.R. and Willmott C.J. 1990a. Mean seasonal and spatial variability in global surface temperature. Theor. Appl. Climatol. 41: 11–21.Google Scholar
  34. Legates D.R. and Willmott C.J. 1990b. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10: 11–127.Google Scholar
  35. Marion G.M. and Everett K.R. 1989. The effect of nutrient and water additions on elemental mobility through small tundra watersheds. Holarctic Ecol. 12: 317–323.Google Scholar
  36. Marion G.M. and Oechel W.C. 1993. Mid-to late-Holocene carbon balance in arctic Alaska and its implications for futureglobal warming. The Holocene 3: 193–200.Google Scholar
  37. Matthes-Sears U., Matthes-Sears W.C., Hastings S.J. and Oechel W.C. 1988. Variation in nutrient status, biomass, vegetative characteristics, and gas exchange of two deciduous shrubs on an arctic tundra slope. Arctic Alpine Res. 20: 342–351.Google Scholar
  38. McGuire A.D., Melillo J.M., Joyce L.A., Kicklighter D.W., Grace A.L., Moore B. III and Vorosmarty C.J. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochem. Cycles 6: 101–124.Google Scholar
  39. McGuire A.D., Clein J.S., Melillo J.M., Kicklighter D.W., Meier R.A., Vorosmarty C.J. and Serreze M.C. 2000. Modelling carbon responses of tundra ecosystems to historical and projected climate: sensitivity of Pan-Arctic carbon storage to temporal and spatial variation in climate. Global Change Biol. 6: 141–159.Google Scholar
  40. McKane R.B., Rastetter E.B., Melillo J.M., Shaver G.R., Hopkinson C.S., Fernandes D.N., Skole D.L. and Chomentowski W.H. 1995. Effects of global change on carbon storage in tropical forests of South America. Global Biogeochem. Cycles 9(3): 329–350.Google Scholar
  41. McKane R.B., Rastetter E.B., Shaver G.R., Nadelhoffer K.J., Giblin A.E., Laundre J.A. and Chapin F.S. III. 1997a. Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology. 78: 1170–1187.Google Scholar
  42. McKane R.B., Rastetter E.B., Shaver G.R., Nadelhoffer K.J., Giblin A.E., Laundre J.A. and Chapin F.S. III. 1997b. Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78: 1188–1198.Google Scholar
  43. Mitchell J.F.B., Johns T.C., Gregory J.M. and Tett S.F.B. 1995. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376: 501–504.Google Scholar
  44. Moorhead D.L. and Reynolds J.F. 1993. Effects of climate change on decomposition in arctic tussock tundra: a modeling synthesis. Arct. Alp. Res. 25: 403–412.Google Scholar
  45. Nadelhoffer K.J., Giblin A.E., Shaver G.R. and Linkins A.E. 1992. Microbial processes and plant nutrient availability in arctic soils. In: Chapin F.S. III, Jefferies R.L., Reynolds J.F., Shaver G.R., Svoboda J. (eds) Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective. Academic Press, San Diego, pp. 281–300Google Scholar
  46. Nadelhoffer K.J., Shaver G.R., Giblin A.E. and Rastetter E.B. 1997. Potential impacts of climate change on nutrient cycling, decomposition, and productivity in Arctic ecosystems. In: Oechel W.C., Callaghan T., Gilmanov T., Holten J.I., Maxwell B., Molau O. and Sveinbjörnsson B. (eds) Global Change and Arctic Terrestrial Ecosystems. Springer, New York, pp. 349–364.Google Scholar
  47. Newbold J.D., Elwood J.W., O'Neill R.V. and Van Winkle W. 1981. Measuring nutrient spiraling in streams. Can. J. Fish. Aquat. Sci., 38: 860–863.Google Scholar
  48. Newbold J.D., O'Neill R.V., Elwood J.W. and Van Winkle W. 1982. Nutrient spiraling in streams: implications for nutrient limitation and invertebrate activity. Am. Nat. 120: 628–652.Google Scholar
  49. Oberbauer S.F., Hastings S.J., Beyers J.L. and Oechel W.C. 1989. Comparative effects of down-slope water and nutrient movement on plant nutrition, photosynthesis, and growth in Alaskan tundra. Holarctic Ecol. 12: 324–334.Google Scholar
  50. Oechel W.C., Riechers G.H., Lawrence W.T., Prudhomme T.I., Vourtilis G.L., Grulke N. and Hasting S.J. 1992. 'CO2LT' an automated, null-balance system for studying the effects of elevated CO2 and global change on unmanaged ecosystems. Funct. Ecol. 6: 86–100.Google Scholar
  51. Ostendorf B. and Reynolds J.F. 1993. Relationships between a terrain-based hydrologic model and patch-scale vegetation patterns in an arctic tundra landscape. Landscape Ecol. 8: 229–237.Google Scholar
  52. Ostendorf B., Quinn P., Beven K. and Tenhunen J.D. 1996. Hydrological controls on ecosystem gas exchange in an arctic landscape. In: Reynolds J.F. and Tenhunen J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, Vol. 120. Springer-Verlag, Berlin, Heidelberg, pp. 369–386Google Scholar
  53. Preedy N., McTiernan K., Matthews R., Heathwaite L. and Haygarth P. 2001. Rapid incidental phosphorus transfers from grassland. J. Environ. Qual. 30: 2105–2112.Google Scholar
  54. Priestley C.H.B. and Taylor R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev. 100: 81–92.Google Scholar
  55. Rastetter E.B. 1996. Validating models of ecosystem response to global change. BioScience 46(3): 190–198.Google Scholar
  56. Rastetter E.B., Ryan M.G., Shaver G.R., Melillo J.M., Nadelhoffer K.J., Hobbie J.E. and Aber J.D. 1991. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate and N deposition. Tree Physiol. 9: 101–126.Google Scholar
  57. Rastetter E.B., McKane R.B., Shaver G.R. and Melillo J.M. 1992. Changes in C storage by terrestrial ecosystems: how C–N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut. 64: 327–344.Google Scholar
  58. Rastetter E.B., McKane R.B., Shaver G.R., Nadelhoffer K.J. and Giblin A.E. 1997. Analysis of CO2, temperature, and moisture effects on carbon storage in Alaskan arctic tundra using a general ecosystem model. In: Oechel W.C., Callaghan T., Gilmanov T., Holten J.I., Maxwell B., Molau U. and Sveinbjörnsson B. (eds) Global Change and Arctic Terrestrial Ecosystems Springer-Verlag, New York, pp. 437–451.Google Scholar
  59. Reiners W.A. and Driese K.L. 2001. The propagation of ecological influences through heterogeneous environmental space. BioScience 51: 939–950.Google Scholar
  60. Reiners W.A., Keller M. and Gerow K.G. 1998. Nitrous oxide and methane fluxes across forest and pasture landscapes in Costa Rica. Water Air Soil Pollut. 105: 117–130.Google Scholar
  61. Schimel D.S. 1990. Biogeochemical feedbacks in the earth system. In: Leggett J. (ed) Global Warming: The Greenhouse Report. Oxford University Press, Oxford, pp. 68–82.Google Scholar
  62. Schimel J.P., Kielland K. and Chapin F.S. III 1996. Nutrient availability and uptake by tundra plants.In: Reynolds J.F. and Tenhunen J.D. (eds) Landscape Function and Disturbance in arctic Tundra. Ecological studies, Vol. 120, Springer-Verlag Berlin Heidelberg, pp. 203–221Google Scholar
  63. Schloss A.L., Kicklighter D.W., Kaduk J., Wittenberg U. and the participants of the Potsdam NPP model intercomparison. 1999. Comparing global models of terrestrial net primary productivity (NPP): comparison of NPP to climate and the Normalized Difference Vegetation Index (NDVI). Global ChangeBiol. 5(Suppl. 1): 25–34.Google Scholar
  64. Shaver G.R. and Chapin F.S. III 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arctic Alpine Res. 18: 261–268.Google Scholar
  65. Shaver G.R. and Chapin F.S. III 1991. Production: biomass relationships and element cycling in contrasting arctic vegetation types, Ecol. Monogr. 61: 1–31.Google Scholar
  66. Shaver G.R., Nadelhoffer K.J. and Giblin A.E. 1991. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. In: Turner M.G. and Gardner R.H. (eds) Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 105–126.Google Scholar
  67. Shaver G.R., Billings W.D., Chapin F.S., Giblin A.E., Nadelhoffer K.J., Oechel W.C. and Rastetter E.B. 1992. Global change and the carbon balance of arctic ecosystems. Bioscience 42: 433–441.Google Scholar
  68. Stieglitz M. Hobbie J.E., Giblin A.E. and Kling G. 1999. Hydrologic modeling of an Arctic Watershed: towards Pan-Arctic predictions. JGR Atmos 104(D22): 27507–27518.Google Scholar
  69. Sturm M., Racine C. and Tape K. 2001. Increasing shrub abundancein theArctic. Nature 411: 546–547.Google Scholar
  70. White J.D., Running S.W., Thornton P.E., Keane R.E., Ryan K.C., Fagre D.B. and Key C.H. 1998. Assessing simulated ecosystem processes for climate variability research at Glacier National Park, USA. Ecol. Appl. 8(3): 805–823.Google Scholar
  71. Williams M., Rastetter E.B., Shaver G.R., Hobbie J.E., Carpino E. and Kwiatkowski B.L. 2001. Primary production in an arctic watershed; an uncertainty analysis. Ecol. Appl. 11: 1800–1816.Google Scholar
  72. Wilson K.B., Baldocchi D.D., Aubinet M., Berbigier P., Bernhofer C., Dolman H., Falge E., Field C., Goldstein A., Granier A., Grelle A., Halldor T., Hollinger D., Katul G., Law B.E., Lindroth A., Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R., Verma S., Vesala T. and Wofsy S. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res. 38(12): 1294, doi 10.1029/2001WR000989.Google Scholar
  73. Young P. 1984. Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin 299 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Edward B. Rastetter
  • Bonnie L. Kwiatkowski
  • Séverine Le Dizès
  • John E. Hobbie

There are no affiliations available

Personalised recommendations