, Volume 66, Issue 1–2, pp 3–33 | Cite as

Groundwater and pore water inputs to the coastal zone

  • William C. Burnett
  • Henry Bokuniewicz
  • Markus Huettel
  • Willard S. Moore
  • Makoto Taniguchi


Both terrestrial and marine forces drive underground fluid flows in the coastal zone. Hydraulic gradients on land result in groundwater seepage near shore and may contribute to flows further out on the shelf from confined aquifers. Marine processes such as tidal pumping and current-induced pressure gradients may induce interfacial fluid flow anywhere on the shelf where permeable sediments are present. The terrestrial and oceanic forces overlap spatially so measured fluid advection through coastal sediments may be a result of composite forcing. We thus define “submarine groundwater discharge” (SGD) as any and all flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force. SGD is typically characterized by low specific flow rates that make detection and quantification difficult. However, because such flows occur over very large areas, the total flux is significant. Discharging fluids, whether derived from land or composed of re-circulated seawater, will react with sediment components. These reactions may increase substantially the concentrations of nutrients, carbon, and metals in the fluids. These fluids are thus a source of biogeochemically important constituents to the coastal ocean. Terrestrially-derived fluids represent a pathway for new material fluxes to the coastal zone. This may result in diffuse pollution in areas where contaminated groundwaters occur. This paper presents an historical context of SGD studies, defines the process in a form that is consistent with our current understanding of the driving forces as well as our assessment techniques, and reviews the estimated global fluxes and biogeochemical implications. We conclude that to fully characterize marine geochemical budgets, one must give due consideration to SGD. New methodologies, technologies, and modeling approaches are required to discriminate among the various forces that drive SGD and to evaluate these fluxes more precisely.

Biogeochemistry Coastal zone Fluxes Hydrology Submarine groundwater discharge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Back W., Hanshaw B.B., Pyler T.E., Plummer L.N. and Weide A.E. 1979. Geochemical significance of groundwater discharge in Caleta Xel Ha, Quintana Roo, Mexico. Water Resources. Res. 15: 1521–1535.Google Scholar
  2. Bacon M.P., Belastock R.A. and Bothner M.H. 1994. 210Pb balance and implications for particle transport on the continental shelf, U.S. Middle Atlantic Bight. Deep Sea Res. Part II Topical Studies in Oceanography 41: 511–535.Google Scholar
  3. Badon-Ghyben W. 1888. Nota in verband met de voorgenomen putboring nabij Amsterdam (Notes on the probable results of well drilling near Amsterdam). Tijdschrift van het Koninklinjk Instituut van Ingenieurs. The Hague 1888/9: 8–22.Google Scholar
  4. Bates R.L. and Jackson J.A. 1984. Dictionary of Geological Terms. American Geological Institute, NY.Google Scholar
  5. Bear J.A., Cheng H.D., Sorek S., Ouuzar D. and Herrera I. (eds) 1999. Seawater intrusion in coastal aquifers – concepts, methods and practices. Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 625.Google Scholar
  6. Berner E.K. and Berner R.A. 1987. The Global Water Cycle. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  7. Bokuniewicz H.J. 1980. Groundwater seepage into Great South Bay, New York. Estuar. Coast. Mar. Sci. 10: 437–444.Google Scholar
  8. Bokuniewicz H.J. and Pavlik B. 1990. Groundwater seepage along a barrier island. Biogeochemistry 10: 257–276.Google Scholar
  9. Bokuniewicz H.J., Buddemeier R., Maxwell B. and Smith C. 2003. The typological approach to submarine groundwater discharge (SGD). Biogeochemistry this-issue.Google Scholar
  10. Boudreau B.P., Huettel M., Froster S., Jahnke R.A., McLachlan A., Middelburg J.J. et al. 2001. Permeable marine sediments: overturning an old paradigm. EOS 82: 133–136.Google Scholar
  11. Bugna G.C., Chanton J.P., Cable J.E., Burnett W.C. and Cable P.H. 1996. The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the northeastern Gulf of Mexico. Geochim. Cosmochim. Acta 60: 4735–4746.Google Scholar
  12. Burnett W.C. 1999. Offshore springs and seeps are focus of working group. EOS 80: 13–15.Google Scholar
  13. Burnett W.C. and Turner J. 2001. LOICZ group investigates groundwater discharge in Australia. LOICZ Newsletter 18: 1–4.Google Scholar
  14. Burnett W.C., Taniguchi M. and Oberdorfer J. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Jour. Sea Research 46: 109–116.Google Scholar
  15. Burnett W.C., Chanton J., Christoff J., Kontar E., Krupa S., Lambert M. et al. 2002. Assessing methodologies for measuring groundwater discharge to the ocean. EOS 83: 117–123.Google Scholar
  16. Ground-water chemical evolution and diagenetic processes in the Upper Floridan aquifer, southern South Carolina and northeastern Georgia. US Geol. Survey Water-Supply Paper 2392. Burt R.A. 1993., 76 p.Google Scholar
  17. Bush P.W. and Johnston R.H. 1988. Ground-water hydraulics, regional flow, and ground-water development of the Floridian aquifer system in Florida and in parts of Georgia, South Carolina and Alabama, US Geol. Survey Prof. Paper 1403-C. 88p.Google Scholar
  18. Cable J.E., Burnett W.C., Chanton J.P. and Weatherly G.L. 1996. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth and Planetary Sci. Lett. 144: 591–604.Google Scholar
  19. Cable J.E., Burnett W.C. and Chanton J.P. 1997. Magnitudes and variations of groundwater seepage into shallow waters of the Gulf of Mexico. Biogeochemistry 38: 189–205.Google Scholar
  20. Cai W.J. and Wang Y. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43: 657–668.Google Scholar
  21. Capone D.G. and Bautista M.F. 1985. A groundwater source of nitrate in nearshore marine sediments. Nature 313: 214–216.Google Scholar
  22. Capone D.G. and Slater J.M. 1990. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry 10: 277–288.Google Scholar
  23. Cathles L.M. 1990. Scales and effects of fluid flow in the upper crust. Science 248: 323–330.Google Scholar
  24. Chandury S. and Clauer N. 1986. Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon. Chem. Geology 59: 293–303.Google Scholar
  25. Conley D.C. and Inman D.L. 1994. Ventilated oscillatory boundary layers. Jour. Fluid Mechanics 273: 261–284.Google Scholar
  26. Considine D.M. (ed.) 1995. Van Nostrand's Scientific Encyc. Van Nostrand, Reinhold, NY.Google Scholar
  27. Cooper H.H., Kohout F.A., Henry H.R. and Glover R.E. 1964. Sea water in coastal aquifers, US Geol. Survey Water Supply Paper 1613-C 84p.Google Scholar
  28. Corbett D.R., Chanton J., Burnett W., Dillon K., Rutkowski C. and Fourqurean J. 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr. 44: 1045–1055.Google Scholar
  29. Corbett D.R., Kump L., Dillon K., Burnett W. and Chanton J. 2000. Fate of wastewater-borne nutrients in the subsurface of the Florida Keys, USA. Marine Chemistry 69: 99–115.Google Scholar
  30. COSOD II 1987. Fluid circulation in the crust and the global geochemical budget. Report of the second conference on scientific ocean drilling. 6-8 July.Google Scholar
  31. D'Elia C.F., Webb K.L. and Porter J.W. 1981. Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: A significant source of N to local reefs? Bull. Mar. Sci. 31: 903–910.Google Scholar
  32. Dillon K.S., Corbett D.R., Chanton J.P., Burnett W.C. and Furbish D.J. 1999. The use of sulfur hexafluoride (SF6) as a tracer of septic tank effluent in the Florida Keys. Jour. Hydrology 220: 129–140.Google Scholar
  33. Dillon K.S., Corbett D.R., Chanton J.P., Burnett W.C. and Kump L. 2000. Bimodal transport of a wastewater plume injected into saline ground water of the Florida Keys. Ground Water 38: 624–634.Google Scholar
  34. Duncan D.A. 1972. High Resolution Seismic Survey, Port Royal Sound Environmental Study, SC. In: Water Resources Comm. Columbia, SC. pp. 85–106.Google Scholar
  35. Etudes theerigues et practigues sure le mouvement des eaux dans les canaux decouvertes et a travers les terrains permeables. Dupuit J. 1863..Google Scholar
  36. Edmond J.M., Measures C., McDuff R.E., Chan L.H., Collier R., Grant B. et al. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46: 1–18.Google Scholar
  37. Emery K.O. 1968. Relict sediments on continental shelves of the world. Am. Assoc. Petroleum Geologists 52: 445–464.Google Scholar
  38. Emery K.O. and Uchupi E. 1972. Western North Atlantic Ocean: topography, rocks, structures, water, life, and sediments. Am. Assoc. Petro. Geol. Memoir 17: 532.Google Scholar
  39. Fanning K.A., Byrne R.H., Breland J.A., Betzer P.R., Moore W.S., Elsinger R.J. et al. 1981. Geothermal springs of the west Florida continental shelf. Evidence for dolomitization and radionuclide enrichment. Earth Planet Sci. Lett. 52: 345–354.Google Scholar
  40. Fetter C.W. 1988. Applied Hydrogeology. McMillan Publishing Co., NY, 592 p.Google Scholar
  41. Freeze R.A. and Cherry J.A. 1979. Groundwater. Prentice-Hall Inc., Englewood Cliffs, NJ, 604 p.Google Scholar
  42. Glover R.E. 1964. The patterns of fresh-water flow in a coastal aquifer. In: Cooper H.H. Jr., Kohout F.A., Henry H.R. and Glover R.E. (eds), Sea water in coastal aquifers. U.S. Geological Survey Water Supply Paper 1613-C. (pp. C32-C35).Google Scholar
  43. Gorsink J.P. and Baker G.C. 1990. Salt fingering in subsea permafrost: some stability and energy considerations. Jour. Geophysical Res. 95: 9575–9584.Google Scholar
  44. Hackett O.M. 1972. Groundwater. In: Fairbridge R. (ed.), Encyclopedia of Geochemistry and Environmental Science. Van Nostrand Reinhold Co., NY, pp. 470–478.Google Scholar
  45. Harrison W.D., Musgrave D. and Reeburgh W.S. 1983. A wave-induced transport process in marine sediments. Jour. Geophysical Res. 88: 7617–7622.Google Scholar
  46. Hayes M.O. 1967. Relationship between coastal climate and bottom sediment type on the inner continental shelf. Mar. Geol. 5: 111–132.Google Scholar
  47. Henry H.R. 1964. Interface between salt water and fresh water in a coastal aquifer. In: Cooper H.H. Jr., Kohout F.A., Henry H.R. and Glover R.E. (eds), Sea water in coastal aquifers. U.S. Geological Survey Water Supply Paper 1613-C, pp. C35–C70.Google Scholar
  48. Herzberg A. 1901. Die Wasserversorgung einiger Nordseebder (The water supply of parts of the North Sea Coast in Germany). Z. Gasbeleucht Wasserveersorg 44: 815–819, and 45: 842–844.Google Scholar
  49. Hubbert M.K. 1940. The theory of ground-water motion. Jour. Geology 48: 785–944.Google Scholar
  50. Huettel M. and Gust G. 1992. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecology Progress Series 82: 187–197.Google Scholar
  51. Huettel M. and Rusch A. 2000. Transport and degradation of phytoplankton in permeable sediment. Limnol. Oceanogr. 45: 534–549.Google Scholar
  52. Huettel M., Ziebis W. and Forster S. 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnol. Oceanogr. 41: 309–322.Google Scholar
  53. Huettel M., Ziebis W., Forster S. and Luther G. 1998. Advective transport affecting metal and nutrient distribution and inter-facial fluxes in permeable sediments. Geochim. Cosmochim. Acta 62: 613–631.Google Scholar
  54. Hutchinson P.A. and Webster I.T. 1998. Solute uptake in aquatic sediments due to current-obstacle interactions. Jour. Environmental Engineering 124: 419–426.Google Scholar
  55. Jackson J.A. (ed.) 1997. Glossary Geology. American Geological Institute, Alexandria, Va.Google Scholar
  56. Jahnke R.A., Nelson J.R., Marinelli R.L. and Eckman J.E. 2000. Benthic flux of biogenic elements on the Southeastern US continental shelf: influence of pore water advective transport and benthic microalgae. Cont. Shelf Res. 20: 109–127.Google Scholar
  57. Jickells T.D. 1998. Nutrient biogeochemistry of the coastal zone. Science 281: 217–222.Google Scholar
  58. Jing L., Ridd P.V., Mayocchi C.L. and Heron M.L. 1996. Wave-induced benthic velocity variations in shallow waters. Estuar. Coast Shelf Sci. 42: 787–802.Google Scholar
  59. Johannes R.E. 1980. The ecological significance of the submarine discharge of ground water. Mar. Ecol. Prog. Ser. 3: 365–373.Google Scholar
  60. Kays W.M. 1972. Heat transfer to the transpired turbulent boundary layer. Intl. Jour. Heat Mass Transfer 15: 1023–1044.Google Scholar
  61. Kearey P. 1993. The Encyclopedia of Solid Earth Sci. Blackwell Scientific Publication, Oxford, 713 p.Google Scholar
  62. Kearey P. 1996. The New Penquin Dictionary of Geology. Penguin Publishers, NY, 366 p.Google Scholar
  63. Kim G. and Hwang D.W. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine Rn-222 and CH4 monitoring. Geophys. Res. Lett. 29.Google Scholar
  64. Kohout F.A. 1966. Submarine springs: A neglected phenomenon of coastal hydrology. Hydrology 26: 391–413.Google Scholar
  65. Krest J.M., Moore W.S., Gardner L.R. and Morris J. 2000. Marsh nutrient export supplied by groundwater discharge: evidence from Ra measurements. Global Biogeochemical Cycles 14: 167–176.Google Scholar
  66. Lambert M.J. and Burnett W.C. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, this issue.Google Scholar
  67. Landmeyer J.E. and Stone P.A. 1995. Radiocarbon and ?13C values related to ground-water recharge and mixing. Ground Water 33: 227–234.Google Scholar
  68. Lee D.R. 1977. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 22: 140–147.Google Scholar
  69. Li L., Barry D.A., Stagnitti F. and Parlange J.Y. 1999. Submarine groundwater discharge and associate chemical input to a coastal sea. Water Resources Research 35: 3253–3259.Google Scholar
  70. Lohse L., Epping E.H.G., Helder W. and Van Raaphorst W. 1996. Oxygen pore water profiles in continental shelf sediments of the North Sea-turbulent versus molecular diffusion. Mar. Ecol. Prog. Ser. 145: 63–75.Google Scholar
  71. Lvovich M.I. 1974. World Water Resources and Their Future. Mysl., Moscow, (in Russian).Google Scholar
  72. Marinelli R.L., Jahnke R.A., Craven D.B., Nelson J.R. and Eckman J.E. 1998. Sediment nutrient dynamics on the South Atlantic Bight continental shelf. Limnol. Oceanogr. 43: 1305–1320.Google Scholar
  73. Marsh J.A. 1977. Terrestrial inputs of nitrogen and phosphates on fringing reefs on Guam. In: Proc. Third Int. Coral Reef Symp. pp. 331–336.Google Scholar
  74. McBride M.S. and Pfannkuch H.O. 1975. The distribution of seepage within lake beds. Jour. Res. U.S. Geological Survey 3: 505–512.Google Scholar
  75. Meybeck M. 1979. Concentrations des eux fluviales en elements majeurs et appros en solution aux oceans. Rev. Geol. Dyn. Geogr. Phys. 21: 215–246.Google Scholar
  76. Milliman J.D. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles 7: 927–957.Google Scholar
  77. Moore W.S. 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380: 612–614.Google Scholar
  78. Moore W.S. 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chem. 65: 111–126.Google Scholar
  79. Moore W.S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, this issue.Google Scholar
  80. Moore W.S., Krest J., Taylor G., Roggenstein E., Joye S. and Lee R. 2002. Thermal evidence of water exchange through a coastal aquifer: implications for nutrient fluxes. Geophys. Res. Lett. 29, 1029/2002GLO14923.Google Scholar
  81. Morse J. and Mackenzie F.T. 1990. Geochemistry of Sedimentary Carbonates. Elsevier, New York, 707 p.Google Scholar
  82. Nace R.L. 1970. World Hydrology: Status and Prospects. In: World Water Balance, I-symp I.A.S.H. –UNESCO – W.H.O. Reading, August 1970, I.A.H.S. Louvain Publ., pp. 1–10 World Water Balance, I-symp I.A.S.H. –UNESCO – W.H.O. Reading, August 1970, I.A.H.S. Louvain Publ.Google Scholar
  83. Nelson A. and Nelson K.D. 1967. Dictionary of Applied Geology. George Newnes Ltd, London, 421 p.Google Scholar
  84. Nelson J.R., Eckman J.E., Robertson C.Y., Marinelli R.L. and Jahnke R.A. 1999. Benthic microalgal biomass and irradiance at the sea floor on the continental shelf of the South Atlantic Bight: Spatial and temporal variability and storm effects. Continental Shelf Res. 19: 477–505.Google Scholar
  85. Nielsen P. 1990. Tidal dynamics in the water table in a beach. Water Resources Research 26: 2127–2134.Google Scholar
  86. Nittrouer C.A. and Wright L.D. 1994. Transport of particles across continental shelves. Reviews of Geophysics 32: 85–113.Google Scholar
  87. Oberdorfer J.A. 2003. Modeling submarine groundwater discharge: comparison to other quantitative methods. Biogeochemistry, this issue.Google Scholar
  88. Paerl H.W. 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 42: 1154–1165.Google Scholar
  89. Parker S.P. (ed.) 1997. Dictionary of Geology and Mineralogy. McGraw Hill, NY, 346 p.Google Scholar
  90. Paull C.K., Speiss F., Curry J. and Twichell D. 1990. Origin of Florida canyon and the role of spring sapping on the formation of submarine box canyons. Geol. Sot. Am. Bull. 102: 502–515.Google Scholar
  91. Pfannkuck H.O. 1969. Elsevier's Dictionary of Hydrogeology. Elsevier Publishing Company, Amsterdam, 168 p.Google Scholar
  92. Plummer L.N. 1975. Mixing of sea water with calcium carbonate ground water. Quantitative Studies in the Geological Sciences, Geol. Sot. Am. Memoir: 219–238.Google Scholar
  93. Price M. 1982. Introducing Groundwater. 2nd edn. George, Allen and Urwin, Ltd., London, 194 p.Google Scholar
  94. Prospero J.M., Barrett K., Church T., Dentener F., Duce R.A., Galloway J.N. et al. 1996. Atmospheric deposition of nutrients to the North Atlantic basin. Biogeochemistry 35: 27–73.Google Scholar
  95. Reay W.G., Gallagher D.L. and Simmons G.M. 1992. Groundwater discharge and its impact on surface water quality in a Chesapeake Bay inlet. Water Res. Bull. 28: 1121–1134.Google Scholar
  96. Reich C.D., Shinn E.A., Hickey T.D. and Tihansky A.B. 2002. Tidal and meteorological influences on shallow marine groundwater flow in the upper Florida Keys. In: (Porter JW &; Porter KG eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, pp. 659–676.Google Scholar
  97. Riedl R., Huang N. and Machan R. 1972. The subtidal pump: a mechanism of interstitial water exchange by wave action. Mar. Biol. 13: 210–221.Google Scholar
  98. Runnels D.D. 1969. Diagenesis, chemical sediments, and mixing of natural waters. Jour. Sedimentary Petrol. 39: 1188–1201.Google Scholar
  99. Rusch A. and Huettel M. 2000. Advective particle transport into permeable sediments-evidence from experiments in an intertidal sandflat. Limnol. Oceanogr. 45: 525–533.Google Scholar
  100. Rutkowski C.M., Burnett W.C., Iverson R.L. and Chanton J.P. 1999. The effect of groundwater seepage on nutrient delivery and seagrass distribution in the northeastern Gulf of Mexico. Estuaries 22: 1033–1040.Google Scholar
  101. Seiler K.P. 2003. Potential areas of subsurface freshwater discharge to the oceans (abs.). In: Proceedings of the XXIII General Assembly of the International Union of Geodesy and Geophysics (IUGG). Sapporo, Japan.Google Scholar
  102. Shiklomanov I.A. 1999. World Water Resources: Modern Assessment and Outlook for the 21st Century. In: International Hydrological Program. UNESCO, Paris International Hydrological Program. UNESCO, Paris.Google Scholar
  103. Shinn E.A., Reich C.D. and Hickey T.D. 2002. Seepage meters and Bernoulli's revenge. Estuaries 25: 126–132.Google Scholar
  104. Shum K.T. and Sundby B. 1996. Organic matter processing in continental shelf sediments-the subtidal pump revisited. Mar. Chem. 53: 81–87.Google Scholar
  105. Simmons G.M. Jr. 1992. Importance of submarine groundwater discharge (SGWD) and seawater cycling to material flux across sediment/water interfaces in marine environments. Marine Ecology Prog. Ser. 84: 173–184.Google Scholar
  106. Skinner A.C. 1991. Groundwater-legal controls and organizational aspects. In: Downing R.A. and Wilkinson W.B. (eds), Applied Groundwater Hydrology. Oxford University Press, NY, pp. 8–15.Google Scholar
  107. Smith B.S. 1988. Ground water flow and salt water encroachment in the upper Floridan aquifer, Beaufort and Jasper Counties S.C. US Geol. Survey Water Resources Investigations Report 87-4285. 61 p.Google Scholar
  108. Smith B.S. 1993. Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, SC. US Geological Survey Open-File Report 91-483. 64 p.Google Scholar
  109. Smith A.J. and Nield S.P. 2003. Groundwater discharge from the superficial aquifer into Cockburn Sound Western Australia: estimation by inshore water balance. Biogeochemistry, this issue.Google Scholar
  110. Smith L. and Zawazski W. 2003. A hydrologic model of submarine groundwater discharge: Florida intercomparison experiment. Biogeochemistry, this issue.Google Scholar
  111. Stiegeler S.E. 1977. A Dictionary of Earth Science. PICA Press, NY.Google Scholar
  112. Stoddart D.R. 1969. World erosion and sedimentation. In: Chorley R.J. (ed.), Water, Earth and Man. Methuen Co. Ltd, London, pp. 43–64.Google Scholar
  113. Taniguchi M. 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett. 29, 10.1029/2002GL014987.Google Scholar
  114. Taniguchi M., Burnett W.C., Cable J.E. and Turner J.V. 2002. Investigations of submarine groundwater discharge. Hydrol. Process. 16: 2115–2129.Google Scholar
  115. Taniguchi M., Burnett W.C., Smith C.F., Paulsen R.J., O'Rourke D. and Krupa S. 2003. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the northeastern Gulf of Mexico. Biogeochemistry, this issue.Google Scholar
  116. Thibodeaux L.J. and Boyle J.D. 1987. Bedform-generated convective transport in bottom sediment. Nature 325: 341–343.Google Scholar
  117. Thorstenson D.C. and Mackenzie F.T. 1974. Time variability of pore water chemistry in recent carbon sediments, Devil's Hole Harrington Sound Bermuda. Geochem. Cosmochim. Acta 38: 1–19.Google Scholar
  118. Todd D.K. 1964. Section 13: Groundwater. In: Chow V.T. (ed.), Handbook of Applied Hydrology. McGraw Hill, NY, pp. 13-1–13-55.Google Scholar
  119. Todd D.K. 1980. Groundwater Hydrology. 2nd edn. John Wiley and Sons, NY, 535 p.Google Scholar
  120. Tolman C.F. 1937. Ground Water. McGraw Hill Book Co., NY, 593 p.Google Scholar
  121. Vacher H.L. 1988. Dupuit-Ghyben-Herzberg analysis of strip-island lenses. Geol. Sot. Am. Bull. 100: 580–591.Google Scholar
  122. Valiela I. and D'Elia C. 1990. Groundwater inputs to coastal waters. Special Issue Biogeochemistry 10: 328.Google Scholar
  123. Valiela I., Costa J., Foreman K., Teal J.M., Howes B. and Aubrey D. 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10: 177–197.Google Scholar
  124. Visser W.A. 1980. Geologic Nomenclature. Gorinchen: Royal Geological and Mining Society of the Netherlands, 540 p.Google Scholar
  125. von Damm K.L. 1990. Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci. 18: 173–204.Google Scholar
  126. von Damm K.L., Edmond J.M., Grant B., Measures C.I., Walden B. and Weiss R.F. 1985. Chemistry of submarine hydrothermal solutions at 21 °N East Pacific. Geochim. Cosmochim. Acta 49: 2197–2220.Google Scholar
  127. Walker P.M.B. 1991. Chambers Earth Science Dictionary. W &; R Chamber Ltd., Edinburgh, 250 p.Google Scholar
  128. Warren M.A. 1944. Artesian water in southeastern Georgia with special reference to the coastal area. Georgia Geol. Survey Bull. 49: 140.Google Scholar
  129. Webb J.E. and Theodor J. 1968. Irrigation of submerged marine sands through wave action. Nature 220: 682–685.Google Scholar
  130. Wiberg P.L. and Harris C.K. 1994. Ripple geometry in wave-dominated environments. Jour. Geophys. Res.-Oceans 99: 775–789.Google Scholar
  131. Williams M.O. 1946. Bahrain: port of perals and petroleum. National Geographic 89: 194–210.Google Scholar
  132. Wolery T.J. and Sleep N.H. 1988. Interactions of geochemical cycles with the mantle. In: Gregor C.B., Garrels R.M., Mackenzie F.T. and Maynard J.B. (eds), Chemical Cycles in the Evolution of the Earth. John Wiley, New York, pp. 77–104.Google Scholar
  133. Wyatt A. 1986. Challinor's Dictionary of Geology. 6th edn. University of Wales Press, Cardiff, 374 p.Google Scholar
  134. Zektser I.S. 1996. Groundwater discharge into the seas and oceans: state of the art. In: Buddemeier R.W. (ed.), Groundwater discharge in the coastal zone. LOICZ IGBP, LOICZ, Texel, Russian Academy of Sciences, Moscow, Netherlands, pp. 122–123, 179 p.Google Scholar
  135. Zektser I.S. 2000. Groundwater and the Environment: Applications for the Global Community. Lewis Publishers, Boca Raton, 175 p.Google Scholar
  136. Zektser I.S. and Loaiciga H.A. 1993. Groundwater fluxes in the global hydrologic cycle: past, present and future. Jour. Hydrol. 144: 405–427.Google Scholar
  137. Ziebis W., Huettel M. and Forster S. 1996. Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar. Ecol. Prog. Ser. 140: 227–237.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • William C. Burnett
    • 1
  • Henry Bokuniewicz
    • 2
  • Markus Huettel
    • 3
  • Willard S. Moore
    • 4
  • Makoto Taniguchi
    • 5
  1. 1.Department of OceanographyFlorida State UniversityTallahasseeUSA
  2. 2.Marine Sciences Research CenterStony Brook UniversityStony BrookUSA
  3. 3.Max Planck Institute for Marine MicrobiologyBremenGermany
  4. 4.Department of Geological SciencesUniversity of South CarolinaColumbiaUSA
  5. 5.Department of Earth SciencesNara University of EducationNaraJapan

Personalised recommendations