Advertisement

Biodegradation

, Volume 15, Issue 1, pp 19–28 | Cite as

Trichloroethylene Degradation by Toluene-Oxidizing Bacteria Grown on Non-aromatic Substrates

  • Chris M. Yeager
  • Kirstin M. Arthur
  • Peter J. Bottomley
  • Daniel J. Arp
Article

Abstract

The potential of trichloroethylene (TCE) to induce andnon-aromatic growth substrates to support TCE degradationin five strains (Pseudomonas mendocina KR1,Ralstonia pickettii PKO1, Pseudomonas putida F1,Burkholderia cepacia G4, B. cepacia PR1) oftoluene-oxidizing bacteria was examined. LB broth andacetate did not support TCE degradation in any of thewild-type strains. In contrast, fructose supported thehighest specific levels of TCE oxidation observed ineach of the strains tested, except B. cepacia G4. Wediscuss the potential mechanisms and implications ofthis observation. In particular, cells of P. mendocinaKR1 degraded significant amounts of TCE during cellgrowth on non-aromatic substrates. Apparently, TCEdegradation was not completely constrained by anygiven factor in this microorganism, as was observedwith P. putida F1 (TCE was an extremely poorsubstrate) or B. cepacia G4 (lack of oxygenaseinduction by TCE). Our results indicate that multiplephysiological traits are required to enable useful TCEdegradation by toluene-oxidizing bacteria in the absenceof aromatic cosubstrates. These traits include oxygenaseinduction, effective TCE turnover, and some level ofresistance to TCE mediated toxicity.

bioremediation catabolite repression fructose Pseudomonas mendocina toluene trichloroethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Cohen L & McCarty PL (1991) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228–235Google Scholar
  2. Ampe F, Leonard D & Lindley ND (1998) Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl. Environ. Microbiol. 64: 1–6Google Scholar
  3. Arp DJ (1995) Understanding the diversity of trichloroethylene cooxidations. Curr. Opin. Biotechnol. 6: 352–358Google Scholar
  4. Carmona M, Rodriguez MJ, Martinez-Costa O & de Lorenzo V (2000) In vivo and in vitro effects of (p)ppGpp on the σ54 promoter Pu of the TOL plasmid of Pseudomonas putida. J. Bacteriol. 182: 4711–4718Google Scholar
  5. Cases I & de Lorenzo V (2000) Genetic evidence of distinct physiological regulation mechanisms in the σ54 Pu promoter of Pseudomonas putida. J. Bacteriol. 182: 956–960Google Scholar
  6. Cases I, Perez-Martin J & de Lorenzo V (1999) The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the σ54-dependent Pu promoter of the TOL plasmid. J. Biol. Chem. 274: 15562–15568Google Scholar
  7. Dahlen EP & Rittmann BE (2002a) A detailed analysis of the mechanisms controlling the acceleration of 2,4-DCP monooxygenation in the two-tank suspended growth process. Biodegradation 13: 117–130Google Scholar
  8. Dahlen EP & Rittmann BE (2002b) Two-tank suspended growth process for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions. Biodegradation 13: 101–116Google Scholar
  9. Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu. Rev. Microbiol. 45: 283–299Google Scholar
  10. Folsom BR, Chapman PJ & Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279–1285Google Scholar
  11. Fox BG, Borneman JG, Wackett LP & Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427Google Scholar
  12. Gornall AG, Bardawill CJ & David MM (1949) Determination of serum proteins by means of the Biuret reaction. J. Biol. Chem. 177: 751–766Google Scholar
  13. Gossett JM (1987) Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons. Environ. Sci. Technol. 21: 202–208Google Scholar
  14. Heald S & Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60: 4634–4637Google Scholar
  15. Holtel A, Marques S, Mohler I, Jakubzik U & Timmis KN (1994) Carbon source-dependent inhibition of xyl operon during expression of the Pseudomonas putida TOL plasmid. J. Bacteriol. 176: 1773–1776Google Scholar
  16. Hyman MR, Russell SA, Ely RL, Williamson KJ & Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480–1487Google Scholar
  17. Landa AS, Sipkema EM, Weijma J, Beenackers AA, Dolfing J & Janssen DB (1994) Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60: 3368–3374Google Scholar
  18. Lange CC, Wackett LP, Minton KW & Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16: 929–933Google Scholar
  19. Leahy JG, Byrne AM & Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62: 825–833Google Scholar
  20. Li S & Wackett LP (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185: 443–451Google Scholar
  21. Mars AE, Houwing J, Dolfing J & Janssen DB (1996) Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 1996: 886–891Google Scholar
  22. McClay K, Streger SH & Steffan RJ (1995) Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl. Environ. Microbiol. 61: 3479–3481Google Scholar
  23. Newman LM & Wackett LP (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179: 90–96Google Scholar
  24. Olsen RH, Kukor JJ & Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol. 176: 3749–3756Google Scholar
  25. Santos PM, Blatny JM, DiBartolo I, Valla S & Zennaro E (2000) Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens. Appl. Environ. Microbiol. 66: 1305–1310Google Scholar
  26. Shields MS, Montgomery SO, Cuskey SM, Chapman PJ & Pritchard PH (1991) Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Appl. Environ. Microbiol. 57: 1935–1941Google Scholar
  27. Shields MS & Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl. Environ. Microbiol. 58: 3977–3983Google Scholar
  28. Shingleton JT, Applegate BM, Nagel AC, Bienkowski PR & Sayler GS (1998) Induction of the tod operon by trichloroethylene in Pseudomonas putida TVA8. Appl. Environ. Microbiol. 64: 5049–5052Google Scholar
  29. Strand SE, Bjelland MD & Stensel HD (1990) Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methaneoxidizing bacteria. Res. J. Wat. Poll. Control Fed. 62: 124–129Google Scholar
  30. Studts JM, Mitchell KH, Pikus JD, McClay K, Steffan RJ & Fox BG (2000) Optimized expression and purification of toluene 4-monooxygenase hydroxylase. Protein Expr. Purif. 20: 58–65Google Scholar
  31. Sze CC & Shingler V (1999) The alarmone (p)ppGpp mediates physiological-responsive control at the σ54-dependent Po promoter. Mol. Microbiol. 31: 1217–1228Google Scholar
  32. Tover A, Ojangu EL & Kivisaar M (2001) Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology-(UK) 147: 2149–2156Google Scholar
  33. van Hylckama Vlieg JET, De Koning W & Janssen DB (1997) Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63: 4961–4964Google Scholar
  34. Verdoni N, Aon M & Lebeault JM (1992) Metabolic and energetic control of Pseudomonas mendocina growth during transitions from aerobic to oxygen-limited conditions in chemostat cultures. Appl. Environ. Microbiol. 58: 3150–3156Google Scholar
  35. Wackett LP & Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54: 1703–1708Google Scholar
  36. Wackett LP & Householder SR (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2727–2725Google Scholar
  37. Winter RB, Yen KM & Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia coli. Bio/Technology 7: 282–285Google Scholar
  38. Yeager CM, Bottomley PJ & Arp DJ (2001) Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl. Environ. Microbiol. 67: 2107–2115Google Scholar
  39. Yeager CM, Bottomley PJ, Arp DJ & Hyman MR (1999) Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl. Environ. Microbiol. 65: 632–639Google Scholar
  40. Yuste L, Canosa I & Rojo F (1998) Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J. Bacteriol. 180: 5218–5226Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Chris M. Yeager
    • 1
  • Kirstin M. Arthur
    • 1
  • Peter J. Bottomley
    • 1
    • 2
  • Daniel J. Arp
    • 1
  1. 1.Molecular and Cellular Biology ProgramCorvallisUSA
  2. 2.Department of Microbiology and Crop and Soil SciencesCorvallisUSA

Personalised recommendations