Biodiversity & Conservation

, Volume 13, Issue 4, pp 795–812

Parataxonomy vs. taxonomy in biodiversity studies – pitfalls and applicability of ‘morphospecies’ sorting

  • Frank-Thorsten Krell


Parataxonomic sorting of samples to recognizable taxonomic units (RTUs, morphospecies, morphotypes or, as proposed here: parataxonomic units [PUs]) is generally considered to be a sufficiently reliable and conservative approach in ecological biodiversity studies or conservation biology. It is obviously time-saving because it avoids the burdens of taxonomy. However, evaluations of parataxonomic sorting by taxonomic resorting show many overestimations of species numbers. Hence, RTU sorting is not necessarily conservative. Sorting errors can be more than 100% (median in the present compilation: 22%). Even if the cumulative results for diverse groups like beetles have a very low overall error, the error rate in the single families is generally much higher. This pattern is likely to cause severe problems in multivariate analyses. The presumable error rate in sorting does not depend only on the group to be sorted, but also on the sorter and the sample. Therefore, the sorting error is not predictable. Since PUs are generally neither described nor assigned to existing names, the sorting results are difficult to check and it is mostly not revealed why the samples are sorted as they are. Since parataxonomy does not use existing biological knowledge, creates typological units and does not disclose its sorting criteria, inter-subjective testability and falsifiability of the sorting results are more difficult than of taxonomic identifications (or are even impossible). Parataxonomy does not fulfil the criteria of a scientific method, but is propedeutic and can be a heuristically valuable tool to find out patterns in taxonomically neglected groups. However, it is only the first step in sorting and identifying samples in biodiversity studies. PUs are useless for inventories and area selection in conservation evaluation, biogeographical and autecological studies; they provide only uncertain data for studies in species turnover and overlap, but they can be used quite reliably for global comparisons of gross species richness, non-comparative descriptions of species richness of single sites or for comparisons of sites without species overlap. If results of parataxonomic sorting show clear and biologically meaningful patterns, the sorting is likely to be reliable. Weak or no detectable patterns may easily be caused by erroneous sorting.

Biodiversity Data quality Morphospecies Morphotype Parataxonomic units Parataxonomy RTU Sorting Taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous 1993. Convention on Biological Diversity opened for signature at Rio de Janeiro 5 June 1992. Miscellaneous Series, Great Britain 3:. 26 pp.Google Scholar
  2. Anonymous 2000. Systematics Agenda 2000: Charting the Biosphere. New York, USA, Technical Report.Google Scholar
  3. Basset Y., Novotny V., Miller S.E. and Pyle R. 2000. Quantifying biodiversity: experience with parataxonomists and digital photography in Papua New Guinea and Guyana. BioScience 50: 899–908.Google Scholar
  4. Beattie A.J., Majer J.D. and Oliver I. 1993. Rapid biodiversity assessment: a review. In: Beattie A.J. (ed.), Rapid Biodiversity Assessment. Macquarie University, Sydney, Australia, pp. 4–14.Google Scholar
  5. Beattie A.J. and Oliver I. 1995. Reply from A.J. Beattie and I. Oliver. Trends in Ecology and Evolution 10: 203–204.Google Scholar
  6. Bolger D.T., Suarez A.V., Crooks K.R., Morrison S.A. and Case T.J. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecological Applications 10: 1230–1248.Google Scholar
  7. Cain A.J. 1954. Animal Species and Their Evolution. Hutchinson's University Library, London.Google Scholar
  8. Campbell I.C. 1995. Taxonomic minimalism. Trends in Ecology and Evolution 10: 203.Google Scholar
  9. Cranston P.S. 1990. Biomonitoring and invertebrate taxonomy. Environmental Monitoring and Assessment 14: 265–273.Google Scholar
  10. Cranston P. and Hillman T. 1992. Rapid assessment of biodiversity using 'biological diversity technicians'. Australian Biologist 5: 144–154.Google Scholar
  11. Derraik J.G.B., Closs G.P., Dickinson K.J.M., Sirvid P., Barratt B.I.P. and Patrick B.H. 2002. Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conservation Biology 16: 1015–1023.Google Scholar
  12. Dudgeon D. 1982. Aspects of the microdistribution of insect macrobenthos in a forest stream in Hong Kong. Archiv für Hydrobiologie, Supplement 64: 221–239.Google Scholar
  13. Dudgeon D. 1984. Longitudinal and temporal changes in functional organization of macroinvertebrate communities in the Lam Tsuen River, Hong Kong. Hydrobiologia 111: 207–217.Google Scholar
  14. Dudgeon D. 1988. The influence of riparian vegetation on macroinvertebrate community structure in four Hong Kong streams. Journal of Zoology 216: 609–627.Google Scholar
  15. Ehrlich P.R. 1997. A World of Wounds: Ecologists and the Human Dilemma. Ecology Institute, Oldendorf/Luhe, Germany.Google Scholar
  16. Floren A. and Linsenmair K.E. 1998. Non-equilibrium communities of Coleoptera in trees in a lowland rain forest of Borneo. Ecotropica 4: 55–67.Google Scholar
  17. Gámez R. 1991. Biodiversity conservation through facilitation of its sustainable use: Costa Rica's National Biodiversity Institute. Trends in Ecology and Evolution 6: 377–378.Google Scholar
  18. Glowka L., Burhenne-Guilmin F., Synge H., McNeely J.A. and Gründling L. 1994. A Guide to the Convention on Biological Diversity (Environmental Policy and Law Paper No. 30). IUCN, Gland, Switzerland.Google Scholar
  19. Hammond P.M. 1995. Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philosophical Transactions of the Royal Society (B) 345: 119–136.Google Scholar
  20. Hopkins G.W. and Freckleton R.P. 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal Conservation 5: 245–249.Google Scholar
  21. Janzen D.H. 1991. How to save tropical biodiversity. American Entomologist 37: 159–171.Google Scholar
  22. Kitching R.L. 1993. Biodiversity and taxonomy: impediment or opportunity? In: Moritz C. and Kikkawa J. (eds), Conservation Biology in Australia and Oceania. Surrey Beatty, Chipping Norton, Australia, pp. 253–268.Google Scholar
  23. König B. and Linsenmair K.E. 1996. Biologische Diversität-Ein Phänomen und seine Dimensionen. In: König B. and Linsenmair K.E. (eds), Biologische Vielfalt. Spektrum Akademischer Verlag, Heidelberg, Germany, pp. 8–15.Google Scholar
  24. Krell F.-T. 1993. Taxonomie auf der Grundlage der Evolutionsbiologie. Carolinea Beiheft 8: 53–59.Google Scholar
  25. Lincoln R., Boxshall G. and Clark P. 1998. A Dictionary of Ecology, Evolution and Systematics. Cambridge University Press, Cambridge, UK.Google Scholar
  26. Mahner M. and Bunge M. 1997. Foundations of Biophilosophy. Springer, Berlin, Germany.Google Scholar
  27. Mayden R.L. 1997. A hierarchy of species concepts: the denouncement in the saga of the species problem. In: Claridge M.F., Dawah H.A. and Wilson M.R. (eds), Species. The Units of Biodiversity. Chapman & Hall, London, pp. 381–424.Google Scholar
  28. Mayr E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  29. Minelli A. and Foddai D. 1997. The species in terrestrial non-insect invertebrates (earthworms, arachnids, myriapods, woodlice and snails). In: Claridge M.F., Dawah H.A. and Wilson M.R. (eds), Species. The Units of Biodiversity (The Systematics Association Special Volume 54). Chapman & Hall, London, pp. 309–324.Google Scholar
  30. New T.R. 1998. Invertebrate Surveys for Conservation. Oxford University Press, Oxford, UK.Google Scholar
  31. Oliver I. and Beattie A.J. 1993. A Possible Method for the Rapid Assessment of Biodiversity. Conservation Biology 7: 562–568.Google Scholar
  32. Oliver I. and Beattie A.J. 1996a. Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecological Applications 6: 594–607.Google Scholar
  33. Oliver I. and Beattie A.J. 1996b. Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10: 99–109.Google Scholar
  34. Pik A.J., Oliver I. and Beattie A.J. 1999. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Australian Journal of Ecology 24: 555–562.Google Scholar
  35. Panchen A.L. 1992. Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge, UK.Google Scholar
  36. Patterson C. 1982. Morphological Characters and Homology. In: Joysey K.A. and Friday A.E. (eds), Problems of Phylogenetic Reconstruction (Systematics Association Special Volume 21). Academic Press, London, pp. 21–74.Google Scholar
  37. Popper R. 1972. Objective Knowledge. Clarendon Press, Oxford, UK.Google Scholar
  38. Popper R. 1989. Logik der Forschung. 9th edn. Mohr, Tübingen, Germany.Google Scholar
  39. Radnitzky G. 1992. Wissenschaftlichkeit. In: Seiffert H. and Radnitzky G. (eds), Handlexikon zur Wissenschaftstheorie. Deutscher Taschenbuch Verlag, München, Germany, pp. 399–405.Google Scholar
  40. Rees C.J.C. 1983. Microclimate and the flying Hemiptera fauna of a primary lowland rain forest in Sulawesi. In: Sutton S.L., Whitmore T.C. and Chadwick A.C. (eds), Tropical Rainforest: Ecology and Management. Blackwell, Oxford, UK, pp. 121–136.Google Scholar
  41. Robinson N.A. (ed.) 1993. Agenda 21: Earth's Action Plan Annotated (IUCN Environmental Policy & Law Paper No. 27). Oceana Publications, New York.Google Scholar
  42. de Roode J. 2000. Testing for Sexual Selection on Male Genitalia in Dung Beetles, M.Sc. Thesis, Wageningen University, The Netherlands, 31 pp. (unpublished).Google Scholar
  43. Sachs L. 1982. Applied Statistics. A Handbook of Techniques. Springer, New York.Google Scholar
  44. Samways M.J., Stork N.E., Cracraft J., Eeley H.A.C., Foster M., Lund G. et al. 1995. Scales, planning and approaches to inventorying and monitoring. In: Heywood V.H. and Watson R.T. (eds), Global Biodiversity Assessment. UNEP and Cambridge University Press, Cambridge, UK, pp. 475–517.Google Scholar
  45. Simpson G.G. 1961. Principles of Animal Taxonomy. Columbia University Press, New York.Google Scholar
  46. Slotow R. and Hamer M. 2000. Biodiversity research in South Africa: comments on current trends and methods. South African Journal of Science 96: 222–224.Google Scholar
  47. Sokal R.R. and Sneath P.H.A. 1963. Principles of Numerical Taxonomy. Freeman, San Francisco, California.Google Scholar
  48. Stork N.E. 1995. Measuring and inventorying arthropod diversity in temperate and tropical forests. In: Boyle T.J.B. and Boontawee B. (eds), Measuring and Monitoring Biodiversity in Tropical and Temperate forests. CIFOR, Bogor, Indonesia, pp. 257–270.Google Scholar
  49. Trueman J.W.H. and Cranston P.S. 1997. Prospects for the rapid assessment of terrestrial invertebrate biodiversity. Memoirs of the Museum of Victoria 56: 349–354.Google Scholar
  50. Uvarov B.P. 1931. Insects and climate. Transactions of the Entomological Society of London 79: 1–247.Google Scholar
  51. Vane-Wright R.I. 2003. Evidence and identity in butterfly systematics. In: Boggs C.L., Watt W.B. and Ehrlich P.R. (eds), Butterflies: Ecology and Evolution Taking Flight. University of Chicago Press, Chicago, Illinois pp. 477–513.Google Scholar
  52. Vecchione M., Mickevich M.F., Fauchald K., Collette B.B., Williams A.B., Munroe T.A. et al. 2000. Importance of assessing taxonomic adequacy in determining fishing effects on marine biodiversity. ICES Journal of Marine Science 57: 677–681.Google Scholar
  53. Vollmer G. 1990. Against Instrumentalism. In: Weingartner P. and Dorn G.J.W. (eds), Studies on Mario Bunge's Treatise. Rodopi, Amsterdam, The Netherlands, pp. 245–259.Google Scholar
  54. Wagner T. 1995. Verteilungsmuster und Artenvielfalt kronenbewohnender Käfer auf verschiedenen Baumarten in Zentralafrika. Verhandlungen des Westdeutschen Entomologentages 1994: 79–87.Google Scholar
  55. Wagner T. 1996. Zusammensetzung der baumbewohnenden Arthropodenfauna in Wäldern Zentralafrikas; mit Anmerkungen zur Nebelmethode und zum Morphotypen-Verfahren. Mitteilungen des Internationalen Entomologischen Vereins 21: 25–42.Google Scholar
  56. White M.J.D. 1978. Modes of Speciation. Freeman, San Francisco, California.Google Scholar
  57. Williams M.B. 1992. Species: current usages. In: Keller E.F. and Lloyd E.A. (eds), Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Massachusetts, pp. 318–323.Google Scholar
  58. Williams P.H. 2001. Complementarity. In: Levin S.A. (ed.), Encyclopedia of Biodiversity 1. Academic Press, San Diego, California, pp. 813–829.Google Scholar
  59. Willmann R. 1985. Die Art in Raum und Zeit. Das Artkonzept in der Biologie und Paläontologie. Parey, Berlin, Germany.Google Scholar
  60. Zangerl R. 1948. The methods of comparative anatomy and its contribution to the study of evolution. Evolution 2: 351–374.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Frank-Thorsten Krell
    • 1
  1. 1.Soil Biodiversity Programme, Department of EntomologyThe Natural History MuseumLondonUK

Personalised recommendations