Biotechnology Letters

, Volume 26, Issue 20, pp 1607–1612 | Cite as

Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1

  • S. Sakai
  • Y. Nakashimada
  • H. Yoshimoto
  • S. Watanabe
  • H. Okada
  • N. Nishio
Article

Abstract

The thermophilic bacterium, Moorella sp. HUC22-1, newly isolated from a mud sample, produced ethanol from H2 and CO2 during growth at 55 °C. In batch cultures in serum bottles, 1.5 mm ethanol was produced from 270 mm H2 and 130 mm CO2 after 156 h, whereas less than 1 mm ethanol was produced from 23 mm fructose after 33 h. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were higher in cells grown with H2 and CO2 than those grown with fructose. The NADH/NAD+ and NADPH/NADP+ ratios in cells grown with H2 and CO2 were also higher than those in cells grown with fructose. When the culture pH was controlled at 5 with H2 and CO2 in a fermenter, ethanol production was 3.7-fold higher than that in a pH-uncontrolled culture after 220 h.

alcohol dehydrogenase ethanol production H2 and CO2 intracellular pyridine nucleotide pool Moorella sp. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol. 161: 345–351.Google Scholar
  2. Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2. J. Bacteriol. 114: 743–751.Google Scholar
  3. Barrow GI, Feltham RKA (1993) Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press, pp. 21–42.Google Scholar
  4. Berríos-Rivera SJ, Bennett GN, San K-Y (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD +-dependent formate dehydrogenase. Metabolic Eng. 4: 217–229.Google Scholar
  5. Buschhorn H, Dürre P, Gottschalk G (1989) Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55: 1835–1840.Google Scholar
  6. Drake HL, Küsel K, Matthies C (2002) Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie van Leeuwenhoek 81: 203–213.Google Scholar
  7. Fröstl JM, Seifritz C, Drake HL (1996) Effect of nitrate on the auto-trophic metabolism of the acetogens Clostridium thermoauto-trophicum and Clostridium thermoaceticum. J. Bacteriol. 178: 4597–4603.Google Scholar
  8. Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J. Ferment. Bioeng. 72: 58–60.Google Scholar
  9. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Meth. Microbiol. 3B: 117–132.Google Scholar
  10. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484–524.Google Scholar
  11. Klingenberg M (1985) Metabolites 2: tri-and dicarboxylic acids, purines, pyrimidines and derivatives, coenzymes, inorganic compounds. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis, Vol. 7. New York, London: Academic Press, pp. 251–267.Google Scholar
  12. Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809–2815.Google Scholar
  13. Marwoto B, Nakashimada Y, Kakizono T, Nishio N (2002) Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnol. Lett. 24: 109–114.Google Scholar
  14. Marwoto B, Nakashimada Y, Kakizono T, Nishio N (2004) Metabolic analysis of acetate accumulation during xylose consumption by Paenibacillus polymyxa. Appl. Microbiol. Biotechnol. 64: 112–119.Google Scholar
  15. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985–987.Google Scholar
  16. Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int. J. Hydrogen Energ. 27: 1399–1405.Google Scholar
  17. Nishio N, Eguchi SY, Kawashima H, Nagai S (1983) Mutual conversion between H 2 plus CO 2 and formate by a formate-utilizing methanogen. J. Ferment. Technol. 61: 557–561.Google Scholar
  18. Simon H, White H, Lebertz H, Thanos I (1987) Reduction of 2-enoates and alkanoates with carbon monoxide or formate, viologens, and Clostridium thermoaceticum to saturated acids and unsaturated alcohols. Angew. Chem. Int. Ed. Engl. 26: 785–787.Google Scholar
  19. Tanner RS, Miller LM, Yang D (1993) Clostridium ljugdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Sys. Bacteriol. 43: 232–236.Google Scholar
  20. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443–1450.Google Scholar
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.Google Scholar
  22. White H, Lebertz H, Thanos I, Simon H (1987) Clostridium thermo-aceticum forms methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiol. Lett. 43: 173–176.Google Scholar
  23. Wimpenny JWT, Firth A (1972) Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J. Bacteriol. 111: 24–32.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Sakai
    • 1
  • Y. Nakashimada
    • 1
  • H. Yoshimoto
    • 1
  • S. Watanabe
    • 2
  • H. Okada
    • 2
  • N. Nishio
    • 1
  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Research and Development CenterCosmo Oil Co. Ltd.SaitamaJapan

Personalised recommendations