Advertisement

Biotechnology Letters

, Volume 26, Issue 15, pp 1181–1189 | Cite as

Review Degradation of microbial polyesters

  • Yutaka TokiwaEmail author
  • Buenaventurada P. Calabia
Article

Abstract

Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(d-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegrada- bility of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including d-3-hydroxycarboxylic acids such as d-3-hydroxybutyric acid, by enzymatic degradation of PHB.

degradation polyesters polyhydroxyalkanoates poly(d-3-hydroxybutyrate) poly(3-hydroxybutyrate)-degrading microorganisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.PubMedGoogle Scholar
  2. Bachmann BM, Seebach D (1999) Investigation of the enzymatic cleavage of diastereomeric oligo(3-hydroxybutanoates) containing two to eight HB subunits. A model for the stereo-selectivity of PHB depolymerase from Alcaligenes faecalis. Macromolecules 32:1777-1784.CrossRefGoogle Scholar
  3. Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomycesisolate. Biotechnol. Lett. 26: 15-19.CrossRefPubMedGoogle Scholar
  4. Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methyl (R)-(-)3-hydroxybutanoate. A new entry to (3R,4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem. Lett.651-654.Google Scholar
  5. Chowdhury AA (1963) Poly-β-hydroxybuttersaure abbauende Bakterien und exo-Enzyme. Arch. Mikrobiol.47: 167-200.PubMedGoogle Scholar
  6. Doi Y (1990) Microbial Polyesters. New York: VCH.Google Scholar
  7. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28: 4822-4828.Google Scholar
  8. Doi Y, Tamaki A, Kunioka M, Soga K (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophusfrom butyric and pentanoic acid.Appl. Microbiol. Biotechnol. 28: 330-334.CrossRefGoogle Scholar
  9. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) The mechanical properties of a thermoplastic elastomer produced by the bacterium Pseudomonas oleovorans. Rubber Chem. Technol. 65: 761-777.Google Scholar
  10. Holmes PA (1985) Applications of PHB-a microbially produced biodegradable thermoplastics. Phys. Technol. 16: 32-36.CrossRefGoogle Scholar
  11. Holmes PA (1988) Biologically produced PHA polymers and copolymers.In: Basset DC, ed. Developments in Crystalline Polymers, Vol. 2. London: Elsevier, pp 1-65.Google Scholar
  12. Jaeger KE, Ransac S, Dijkstra BW, Colson C, Heuvel Mvan, Misset O (1994) Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63.PubMedGoogle Scholar
  13. Jaeger KE, Steinbuchel A, Jendrossek D (1995) Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(ω-hydroxyalkanoates). Appl. Environ. Microbiol. 61: 311-318.Google Scholar
  14. Jendrossek D (1998) Microbial degradation of polyesters: a review on extracellular poly-(hydroxyalkanoic acid) depolymerase. Polym. Degrad. Stab. 59: 317-325.CrossRefGoogle Scholar
  15. Jendrossek D (2001) Microbial degradation of polyesters. In: Scheper T, ed. Biopolyesters. Advances in Biochemical Engineering/ Biotechnology, Berlin, Heidelberg: Springer-Verlag, pp. 293-325.Google Scholar
  16. Jendrossek D, Knoke I, Habibian RB, Steinbuchel A, Schlegel HG (1993) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonassp. J. Environ. Polym Degrad. 1: 53-63.Google Scholar
  17. Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl. Microbiol Biotechnol. 46: 451-463.PubMedGoogle Scholar
  18. Kasuya K, Doi Y, Yao T (1994) Enzymatic degradation of poly[(R)-3-hydroxy-butyrate] by Comamonas testosteroneATSU of soil bacterium. Polym. Degrad. Stab. 45: 379-386.CrossRefGoogle Scholar
  19. Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrateoligomer hydrolase (PhaZ2) in Ralstonia eutrophaH16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J. Bacteriol. 185: 3485-3490.PubMedGoogle Scholar
  20. -caprolactone), poly(1,4-butylene adipate) and poly(vinyl acetate)}. Polym. Degrad. Stab. 35: 87-93.CrossRefGoogle Scholar
  21. -butanediol or from 3-hydroxybutyrate by Pseudomonassp. A33.}Appl. Microbiol. Biotechnol. 42: 901-909.CrossRefGoogle Scholar
  22. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14.Google Scholar
  23. Lee SY, Hong S, Lee S, Park S (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci. 4: 157-164.CrossRefPubMedGoogle Scholar
  24. Lee SY, Lee Y, Wang F (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals.Biotechnol. Bioeng. 65: 363-368.CrossRefPubMedGoogle Scholar
  25. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16: 97-105.CrossRefGoogle Scholar
  26. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl. Environ. Microbiol. 59: 3233-3238.PubMedGoogle Scholar
  27. Merrick JM, Doudoroff M (1964) Depolymerization of polyβ-hydroxybutyrate by an intracellular enzyme system. J. Bacteriol.88: 60-71.PubMedGoogle Scholar
  28. Mukai K, Doi Y, Sema Y, Tomita K (1993) Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol. Lett. 15: 601-604.Google Scholar
  29. Mukai K, Yamada K, Doi Y (1994) Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeriYM1414 isolated from lake water. Polym. Degrad. Stab. 43: 319-327.CrossRefGoogle Scholar
  30. Nakayama K, Saito T, Fukui T, Shirakura Y, Tomita K (1985) Puri-fication and properties of extracellular poly(3-hydroxybutyrate) depolymerases from Pseudomonas lemoigne. Biochim. Biophys. Acta. 827: 63-72.PubMedGoogle Scholar
  31. Nishida H, Tokiwa Y (1992) Effects of higher order structure of poly(3-hydroxybutyrate) on its biodegradation I. Effects of heat treatment on microbial degradation. J. Appl. Polym. Sci. 46: 1467-1476.CrossRefGoogle Scholar
  32. Distribution of poly(β-caprolactone) aerobic degrading microorganisms in different environments}. J. Environ. Polym. Degrad. 1: 227-233.Google Scholar
  33. Nishida H, Konno M, Ikeda A, Tokiwa Y (2000) Microbial degradation of poly(p-dioxanone) I. Isolation of degrading microorganisms and microbial decomposition in pure culture. Polym. Degrad. Stab. 68: 205-217.CrossRefGoogle Scholar
  34. Nishida H, Suzuki S, Tokiwa Y (1998) Distribution of poly(β-propiolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 6: 43-58.Google Scholar
  35. Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of Nodax copolymers and poly(lactic acid). Macromol. Biosci. 4: 269-275.PubMedGoogle Scholar
  36. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsissp. Appl. Environ. Microbiol. 63: 1637-1640.Google Scholar
  37. Saegusa H, Shiraki M, Kanai C, Saito T (2001) Cloning of an intracellular poly[D(-)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutrophaH16 and characterization of the gene product. J. Bacteriol. 183: 94-100.PubMedGoogle Scholar
  38. Sanchez JG, Tsuchii A, Tokiwa Y (2000) Degradation of polycaprolactone at 50 ?C by a thermotolerant Aspergillussp. Biotechnol. Lett. 22: 849-853.CrossRefGoogle Scholar
  39. Schober U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoigne. Appl. Environ. Microbiol. 66: 1385-1392.CrossRefPubMedGoogle Scholar
  40. Shirakura Y, Fukui T, Saito T, Okamoto Y, Narikawa T, Koide K, Tomita K, Takemasa T, Masamune S (1986) Degradation of poly(3-hydroxybutyrate) by poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalisT1. Biochim. Biophys. Acta 880: 46-53.PubMedGoogle Scholar
  41. Shirakura Y, Fukui T, Tanio T, Nakayama K, Matsuno R (1983) An extracellular D(-)-3-hydroxybutyrate oligomer hydrolase from Alcaligenes faecalis. Biochim. Biophys. Acta 748: 331-339.PubMedGoogle Scholar
  42. Snell KD, Peoples OP (2001) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab. Eng. 4: 29-40.CrossRefGoogle Scholar
  43. Suyama T, Tokiwa Y, Quichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 64: 5008-5011.PubMedGoogle Scholar
  44. Swinkels JJM (1985) Composition and properties of commercial native starches. Starch 37: 1-5.Google Scholar
  45. Taguchi S, Nakamura H, Kichise T, TsugeT, Yamato I, Doi Y (2003) Production of polyhdroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutrophausing mutants of original PHA synthase. Biochem Eng J. 16: 107-113.CrossRefGoogle Scholar
  46. Takeda M, Koizumi J, Yabe K, Adachi K (1998) Thermostable poly(3-hydroxybutyrate) depolymerase of a thermophilic strain of Leptothrixsp. isolated from hot spring. J. Ferment. Bioeng. 85: 375-380.CrossRefGoogle Scholar
  47. Tanaka M, Saito T, Fukui T, Tomita K (1981) Purification and properties of D(-)-3-hydroxybutyrate-dimer hydrolase from Zoogloea ramigera1-16-M. Eur. J. Biochem. 118: 177-182.PubMedGoogle Scholar
  48. Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S (1982) An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur. J. Biochem. 124: 71-77.PubMedGoogle Scholar
  49. Tansengco ML, Tokiwa Y (1998a) Comparative population study on aliphatic polyesters-degrading microorganisms at 50 ?C. Chem. Lett.1043-1044.Google Scholar
  50. Tansengco ML, Tokiwa Y (1998b) Thermophilic microbial degradation of polyethylene succinate. World J. Microbiol. Biotechnol. 14: 133-138.CrossRefGoogle Scholar
  51. Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol. Symp. 201: 283-289.CrossRefGoogle Scholar
  52. Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270: 76-78.PubMedGoogle Scholar
  53. Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemarlipase. Agric. Biol. Chem. 42: 1071-1072.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Central 6IbarakiJapan

Personalised recommendations