Advertisement

Biotechnology Letters

, Volume 26, Issue 10, pp 771–777 | Cite as

Biodegradation of poly(l-lactide)

  • Yutaka Tokiwa
  • Amnat Jarerat
Article

Abstract

The biodegradation of poly(l-lactide) (PLA) is reviewed. The important role of actinomycetes in PLA degradation is emphasized. These PLA-degrading actinomycetes belong phylogenetically to the Pseudonocardiaceae family and related genera, including Amycolatopsis, Lentzea, Streptoalloteichus, Kibdelosporangium and Saccharothrix. A PLA-degrading enzyme purified from an isolated Amycolatopsis strain-41 has substrate specificity on PLA higher than proteinase K. The application of these strains and their enzymes can be effectively used for biological treatment of plastic wastes containing PLA.

actinomycetes biodegradation polyesters poly(l-lactide) poly(l-lactide)-degrading enzyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J. Polym. Sci. Part B: Polym. Phys. 34: 2701–2708.Google Scholar
  2. Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol. Lett. 26: 15–19.Google Scholar
  3. Carothers WH (1929) Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. J. Am. Chem. Soc. 51: 2548–2559.Google Scholar
  4. Chiba T, Nakai T (1985) A synthetic approach to (+)-thienamycin from methyl (R)-3-hydroxybutanoate: a new entry to (3R, 4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem. Lett. 1985: 651–654.Google Scholar
  5. Fan Y, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polym. Degrad. Stab. 79: 547–562.Google Scholar
  6. Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(L-lactide). J. Gen. Appl. Microbiol. 45: 247–251.Google Scholar
  7. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules 31: 2461–2467.Google Scholar
  8. Jarerat A, Tokiwa Y (2001) Degradation of poly(L-lactide) by a fungus. Macromol. Biosci. 1: 136–140.Google Scholar
  9. Jarerat A, Tokiwa Y (2003) Degradation of poly(L-lactide) by Saccharothrix waywayandensis. Biotechnol. Lett. 25: 401–404.Google Scholar
  10. Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(L-lactide)-degrading activity in various actinomycetes. Macromol. Biosci. 2: 420–428.Google Scholar
  11. Jarerat A, Tokiwa Y, Tanaka H (2003) Poly(L-lactide) degradation by Kibdelosporangium aridum. Biotechnol. Lett. 25: 2035–2038.Google Scholar
  12. Leenslag JW, Gogolewski S, Pennings AJ (1984) Resorbable materials of poly(L-lactide). V. Influence of secondary structure on the mechanical properties and hydrolyzability of poly(L-lactide) fibers produced by a dry-spinning method. J. Appl. Polym. Sci. 29: 2829–2842.Google Scholar
  13. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation. Biomaterials 8: 311–314.Google Scholar
  14. McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29: 7356–7361.Google Scholar
  15. Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(L-lactic acid)s incorporating phenylsubstituted alpha-hydroxy acids as comonomers. Macromol. Biosci. 3: 301–309.Google Scholar
  16. Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 62: 456–460.Google Scholar
  17. Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl. Environ. Microbiol. 67:345–353.Google Scholar
  18. Nakayama A, Kawasaki N, Aiba S, Maeda Y, Arvanitoyannis I, Yamamoto N (1998) Synthesis and biodegradability of novel copolyesters containing γ-butyrolactone units. Polymer 39: 1213–1222.Google Scholar
  19. Nakayama A, Kawasaki N, Maeda Y, Arvanitoyannis I, Aiba S, Yamamoto N (1997) Study of biodegradability of poly(δ-valerolactone-co-L-lactide)s. J. Appl. Polym. Sci. 66: 741–748.Google Scholar
  20. Nishida H, Tokiwa Y (1993) Distribution of poly (δ-hydroxybutyrate) and poly(δ-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1: 227–233.Google Scholar
  21. Nishida H, Tokiwa Y (1994) Degradation of poly (2-oxepanone) by phytopathogens. Chem. Lett. 1994: 1547–1550.Google Scholar
  22. Nishida H, Tokiwa Y (2000) Microbial degradation of poly (p-dioxanone). I. Isolation of degrading microorganisms and microbial decomposition in pure culture. Polym. Degrad. Stab. 68: 205–217.Google Scholar
  23. Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J. Polym. Environ. 8: 29–32.Google Scholar
  24. Pranamuda H, Tokiwa Y (1999) Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis. Biotechnol. Lett. 21: 901–905.Google Scholar
  25. Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis strain HT-6. Appl. Environ. Microbiol. 65: 4220–4222.Google Scholar
  26. Pranamuda H, Tokiwa Y, Tanaka H (1995) Microbial degradation of an aliphatic polyester with a high melting point, poly(tetramethylene succinate). Appl. Environ. Microbiol. 61: 1828–1832.Google Scholar
  27. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 63: 1637–1640.Google Scholar
  28. Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(L-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol. Biosci. 1: 25–29.Google Scholar
  29. ReeveMS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27: 825–831.Google Scholar
  30. Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-L-lactide degrading bacterium from compost and its enzymatic characterization. J. Biosci. Bioeng. 92: 298–300.Google Scholar
  31. Strydom DJ, Haylett T, Stead RH (1977) The amino-terminal acid sequence of silk fibroin peptide Cp-a reinvestigation. Biochem. Biophys. Res. Commun. 79: 932–938.Google Scholar
  32. Tansengco ML, Tokiwa Y (1998) Thermophilic microbial degradation of polyethylene succinate. World J. Microbiol. Biotechnol. 14: 133–138.Google Scholar
  33. Tomita K, Kuroki Y, Nakai K (1999) Isolation of thermophiles degrading poly(L-lactic acid). J. Biosci. Bioeng. 87: 752–755.Google Scholar
  34. Tokiwa Y, Jarerat A (2003) Microbial degradation of aliphatic polyesters. Macromol. Symp. 201: 283–289.Google Scholar
  35. Tokiwa Y, Suzuki T (1974) Degradation of polyethylene glycol adipate by a fungus. J. Ferment. Technol. 52: 393–398.Google Scholar
  36. Tokiwa Y, Suzuki T (1977a) Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp. strain 14-3. Agric. Biol. Chem. 41: 265–274.Google Scholar
  37. Tokiwa Y, Suzuki T (1977b) Hydrolysis of polyesters by lipases. Nature 270: 76–78.Google Scholar
  38. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J. Appl. Polym. Sci. 26: 441–448.Google Scholar
  39. Tokiwa Y, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(L-lactide) degradability. Chem. Lett. 1999: 355–356.Google Scholar
  40. Tokiwa Y, Pranamuda H, Jarerat A, Nishida H (2000) Ninth Annual Meeting of the BioEnvironmental Polymer Society, Hawaii, p. 33.Google Scholar
  41. Tokiwa Y, Suzuki T, Takeda K (1988) Two types of lipases in hydrolysis of polyester. Agric. Biol. Chem. 52: 1937–1943.Google Scholar
  42. Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(L-lactide). Macromol. Biosci. 1: 59–65.Google Scholar
  43. Tsuji H, Miyauchi S (2001) Poly(L-lactide). VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region. Polym. Degrad. Stab. 71: 415–424.Google Scholar
  44. Tsuji H, Nakahara K (2002) Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 86: 186–194.Google Scholar
  45. Vainionpaa S, Rokkanen P, Tormall P (1989) Surgical application of biodegradable polymers in human-tissues. Prog. Polym. Sci. 14: 679–716.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yutaka Tokiwa
    • 1
  • Amnat Jarerat
    • 2
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6Tsukuba, IbarakiJapan
  2. 2.C.P.R. Co., Ltd.Himeji, HyogoJapan

Personalised recommendations