Biotechnology Letters

, Volume 26, Issue 6, pp 463–472 | Cite as

Applied biocatalysis for the synthesis of natural flavour compounds – current industrial processes and future prospects

  • J. Schrader
  • M.M.W. Etschmann
  • D. Sell
  • J.-M. Hilmer
  • J. Rabenhorst

Abstract

The industrial application of biocatalysis for the production of natural flavour compounds is illustrated by a discussion of the production of vanillin, γ-decalactone, carboxylic acids, C6 aldehydes and alcohols (`green notes'), esters, and 2-phenylethanol. Modern techniques of molecular biology and process engineering, such as heterologous expression of genes, site-directed mutagenesis, whole-cell biocatalysis in biphasic systems, and cofactor regeneration for in vitro oxygenation, may result in more biocatalytic processes for the production of flavour compounds in the future.

biocatalysis γ-decalactone flavour 2-phenylethanol vanillin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 54: 799–807.Google Scholar
  2. Bauer K, Garbe D, Surburg H (2001) Common Fragrance and Flavor Materials, 4th edn. Weinheim: Wiley-VCH, pp. 9–10.Google Scholar
  3. Belin J-M, Dumont B, Ropert F (1998) Enzymatic process for the preparation of flavours, in particular the ionones and C6 to C10 aldehydes. Patent US 5705372.Google Scholar
  4. Belitz H-D, Grosch W (1999) Food Chemistry, 2nd Engl. edn. Berlin: Springer.Google Scholar
  5. Bell SG, Sowden RJ, Wong L-L (2001) Engineering the haem monooxygenase cytrochrome P450cam for monoterpene oxidation. Chem. Commun. 7: 635–636.Google Scholar
  6. Berger RG (1995) Aroma Biotechnology. Berlin: Springer.Google Scholar
  7. Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in Organic Synthesis. Weinheim: Wiley-VCH.Google Scholar
  8. Brenna E, Fuganti C, Serra S (2003) Enantioselective perception of chiral odorants. Tetrahedron: Asymmetrie 14: 1–42.Google Scholar
  9. Brunerie P, Koziet Y (1997) Process for producing natural cis-3-hexenol from unsaturated fatty acids. Patent US 5620879.Google Scholar
  10. Brunerie P, Kohler D, Savina J-P (1999) Method for extracting 2-phenylethanol. Patent US 5965780.Google Scholar
  11. Cardillo R, Fuganti C, Sacerdote C, Barbeni M, Cabella P, Squarcia F (1989 Process for the microbiological production of gamma-decalactone (R) and gamma-octalactone (R). Patent EP 356291.Google Scholar
  12. Cheetham PSJ (1997) Combining the technical push and the business pull for natural flavours. Adv. Biochem. Eng./Biotechnol. 55: 1–49.Google Scholar
  13. Cheetham PSJ, Maume KA, de Rooji JF (1988) Production of lactones. Patent EP 0258 993.Google Scholar
  14. Clark GS (1990) Phenethyl alcohol. Perfum. Flavor. 15: 37–44.Google Scholar
  15. Dufossé L, Feron G, Mauvais G, Bonnarme P, Durand A, Spinnler H-E (1998) Production of ?-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. J. Ferment. Bioeng. 86: 169–173.Google Scholar
  16. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl. Microbiol. Biotechnol. 59: 1–8.Google Scholar
  17. Etschmann MMW, Sell D, Schrader J (2003a) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol. Lett. 25: 531–536.Google Scholar
  18. Etschmann M, Sell D, Schrader J (2003b) Microbial production of 2-phenylethanol by an integrated bioprocess. In: Flavour Research at the Dawn of the Twenty-First Century. London: Intercept Publ. Ltd. pp. 385–388.Google Scholar
  19. Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J. Mol. Cat. B.: Enzym., in press.Google Scholar
  20. Fabre CE, Blanc PJ, Marty A, Goma G (1996) Extraction of 2-phenylethyl alcohol by techniques such as adsorption, inclusion, supercritical CO2, liquid-liquid and membrane separations. Perfum. Flavor. 21: 27–40.Google Scholar
  21. Fontanille P, Larroche C (2003) Optimization of isonovalal production from a-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl. Microbiol. Biotechnol. 60: 534–540.Google Scholar
  22. Gatfield IL, Güntert M, Sommer H, Werkhoff P (1993) Some aspects of microbiological manufacture of flavor-active lactones with particular reference to ?-decalactone. Chem. Mikrobiol. Technol. Lebensm. 15: 165–170.Google Scholar
  23. Gatfield IL, Hilmer, J-M, Bertram HJ (2001) The use of natural fatty acids for the biotechnological production of natural flavour compounds: application to ethyl trans-2, cis-4-decadienoate. Chimia 55: 397–401.Google Scholar
  24. Gatfield IL, Hilmer J-M, Bornscheuer U, Schmid R, Vorlova S (2002) Process for the preparation of L-menthol. Patent EP 1223223.Google Scholar
  25. Goers SK, Ghossi P, Patterson JT, Young CL (1989) Process for producing a green leaf essence. Patent US 4806379.Google Scholar
  26. Haudenschild C, Schalk M, Karp F, Croteau R (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Eschericha coli and Saccharomyces cerevisiae. Arch. Biochem. Biophys. 379: 127–136.Google Scholar
  27. Häusler A, Lerch K, Muheim A, Silke N (2001) Hydroperoxide lyases. Patent US 6238898.Google Scholar
  28. Holtz RB, McCulloch MJ, Garger SJ, Teague RK, Phillips HF (2001) Methods for providing green note compounds. Patent US 6274358.Google Scholar
  29. Jin Z, Yang S-T (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol. Prog. 14: 457–465.Google Scholar
  30. Jollivet N, Bézenger M-C, Vayssier Y, Belin J-M (1992) Production of volatile compounds in liquid cultures by six strains of coryneform bacteria. Appl. Microbiol. Biotechnol. 36: 790–794.Google Scholar
  31. Kümin B, Münch T (1997) Process for the preparation of a lactone. Patent EP 0795607.Google Scholar
  32. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.Google Scholar
  33. Maurer S, Schulze H, Schmid RD, Urlacher V (2003) Immobilisation of P450 BM-3 and an NADP+ cofactor recycling system: towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv. Synth. Catal. 345: 802–810.Google Scholar
  34. Molinari F, Villa R, Aragozzini F, Cabella P, Barbeni M, Squarcia F (1997) Multigram-scale production of aliphatic carboxylic acids by oxidation of alcohols with Actobacter pasteurianus NCIMB 11664. J. Chem. Technol. Biotechnol. 70: 294–298.Google Scholar
  35. Muheim A, Häusler A, Schilling B, Lerch K (1997) The impact of recombinant DNA-technology on the flavour and fragrance industry. In: Flavours and Fragrances: Proceeding of a Conference, Warwick. Cambridge: Royal Society of Chemistry, pp. 11–20. ISBN 0-85404-787-5.Google Scholar
  36. Muller BL, Dean C, Whitehead IM (1995a) The industrial use of plant enzymes for the production of natural 'green note' flavour compounds. In: Étiévant P, Schreier P, eds. Bioflavour 95, Dijon (France) February 14-17. Paris: INRA, pp. 339–344.Google Scholar
  37. Muller B, Gautier A, Dean C, Kuhn J-C (1995b) Process for the enzymatic preparation of aliphatic alcohols and aldehydes from linoleic acid, linolenic acid, or a natural precursor. Patent US 5464761.Google Scholar
  38. Nicaud JM, Belin JM, Pagot Y, Endrizzi A (1995) Bioconversion of substrate with microbe auxotrophic for specific compound in medium deficient in this compound. Patent FR 2734-843.Google Scholar
  39. Okui S, Uchiyama M, Mizugaki M (1963) Metabolism of hydroxy fatty acids. II. Intermediates of the oxidative breakdown of ricinoleic acid by genus Candida. J. Biochem. 54: 536–540.Google Scholar
  40. Overhage J Priefert H, Rabenhorst J, Steinbüchel A (1999) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl. Microbiol. Biotechnol. 52: 820–828.Google Scholar
  41. Pagot Y, Endrizzi A, Nicaud JM, Belin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve gamma-decalactone production yields. Lett. Appl. Microbiol. 25: 113–116.Google Scholar
  42. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl.Microbiol. Biotechnol. 56: 296–314.Google Scholar
  43. Rabenhorst J (2000) Biotechnological production of natural aroma chemicals by fermentation processes. In: Rehm H-J, Reed G, eds. Biotechnology, Vol. 8b, 2nd edn. Weinheim: Wiley-VCH, pp. 333–350.Google Scholar
  44. Rabenhorst J, Gatfield I (2000) Method of producing ?-decalactone. Patent WO 0024920.Google Scholar
  45. Rabenhorst J, Gatfield IL, Hilmer J-M (2001) Fermentative procedure for obtaining aromatic, aliphatic and thiocarboxylic acid and microorganisms therefor. Patent EP 1081229.Google Scholar
  46. Ranadive AS (1994) Vanilla-cultivation, curing, chemistry, technology and commercial products. Dev. Food Sci. 34: 517–577.Google Scholar
  47. Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm H-J, Reed G, eds. Biotechnology, Vol. 10, 2nd edn.Weinheim: Wiley-VCH, pp. 373–422.Google Scholar
  48. Spinnler HE, Dijan A (1991) Bioconversion of amino acids into flavouring alcohols and esters by Erwinia carotovora subsp. atroseptica. Appl. Microbiol. Biotechnol. 35: 264–269.Google Scholar
  49. Stark D, Münch T, Sonnleitner B, Marison IW, von Stockar U (2002) Extractive Bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnol. Prog. 18: 514–523.Google Scholar
  50. Svitel J, Sturdik E (1995) n-Propanol conversion to propionic acid by Gluconobacter oxydans. Enzyme Microb. Technol. 17: 549–550.Google Scholar
  51. Wein M, Lavid N, Lunkenbein S, Lewinsohn E, Schwab W, Kaldenhoff R (2002) Isolation, cloning and expression of a multifunctional O-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone, one of the key aroma compounds in strawberry fruits. Plant J. 31: 755–765.Google Scholar
  52. Wink J, Voelskow H, Grabley S, Deger HM (1988) Pfirsich Aroma, Verfahren zur Herstellung und seine Verwendung. Patent EP 286 950.Google Scholar
  53. Wüst M, Little DB, Schalk M, Croteau R (2001) Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3-and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Arch. Biochem. Biophys. 387: 125–136.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Schrader
    • 1
  • M.M.W. Etschmann
    • 1
  • D. Sell
    • 1
  • J.-M. Hilmer
    • 2
  • J. Rabenhorst
    • 2
  1. 1.Karl Winnacker Institute, DECHEMA e.V.Frankfurt/MainGermany
  2. 2.Symrise GmbH & Co. KGHolzmindenGermany

Personalised recommendations