Advertisement

Biotechnology Letters

, Volume 26, Issue 4, pp 321–325 | Cite as

Performance of a newly developed integrant of Zymomonasmobilis for ethanol production on corn stover hydrolysate

  • Ali Mohagheghi
  • Nancy Dowe
  • Daniel Schell
  • Yat-Chen Chou
  • Christina Eddy
  • Min Zhang
Article

Abstract

Efficient conversion of lignocellulosic biomass requires biocatalysts able to tolerate inhibitors produced by many pretreatment processes. Recombinant Zymomonas mobilis 8b, a recently developed integrant of Zymomonasmobilis 31821(pZB5), tolerated acetic acid up to 16 g l−1 and achieved 82%–87% (w/w) ethanol yields from pure glucose/xylose solutions at pH 6 and temperatures of 30 °C and 37 °C. An ethanol yield of 85% (w/w) was achieved on glucose/xylose from hydrolysate produced by dilute sulfuric acid pretreatment of corn stover after an `overliming' process was used to improve hydrolysate fermentability.

corn stover ethanol overliming pretreatment Zymomonas mobilis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentation of glucose and xylose by Saccharomyces cerevisiae, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19: 220–225.Google Scholar
  2. Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL (2002) Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnol. Lett. 24: 819–824.Google Scholar
  3. Joachimsthal E, Haggett KD, Jang J, Rogers PL (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol. Lett. 20: 137–142.Google Scholar
  4. Kim IS, Barrow KD, Rogers PL (2000) In vivo nuclear magnetic resonance studies of ethanol fermentation characteristics and acetic acid inhibition of a recombinant Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86: 357–370.Google Scholar
  5. Kim IS, Barrow KD, Rogers PL (2003) 31P Nuclear Magnetic Resonance studies of acetic acid inhibition of ethanol production by strains of Zymomonas mobilis. J. Microbiol. Biotechnol. 13: 90–98.Google Scholar
  6. Lawford HG, Rousseau JD (1993) The effect of acetic acid on fuel ethanol production by Zymomonas. Appl. Biochem. Biotechnol. 39-40: 687–699.Google Scholar
  7. Lawford HG, Rousseau JD (1994) The pH-dependent energy uncoupling of Zymomonas by acetic acid. Appl. Biochem. Biotechnol. 45-46: 437–448.Google Scholar
  8. Lawford HG, Ruggiero A (1990) Production of fuel alcohol by Zymomonas: effect of pH on maintenance and growth associated metabolism. Biotechnol. Appl. Biochem. 12: 206–211.Google Scholar
  9. Lawford HG, Rousseau JD, Mohagheghi A, McMillan J (1998) Continuous culture studies of xylose-fermenting Zymomonas mobilis. Appl. Biochem. Biotechnol. 70-72: 353–367.Google Scholar
  10. Lawford HG, Rousseau JD, Tolan JS (2001) Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Appl. Biochem. Biotechnol. 91-93: 133–146.Google Scholar
  11. McMillan JD (1994) Conversion of hemicellulose hydrolysates to ethanol. In: Himmel ME, Baker JO, Overend R, eds. Enzymatic Conversion of Biomass for Fuels Production, American Chemical Society Symp. Ser 566. Washington, DC: American Chemical Society, pp. 411–437.Google Scholar
  12. McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylosefermenting Zymomonas mobilis. Appl. Biochem. Biotechnol. 77-79: 649–665.Google Scholar
  13. Pampulha ME, Loureiro V (1989) Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol. Lett. 11: 269–274.Google Scholar
  14. Ranatunga TD, Jervis J, Helm RF, McMillan JD, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl. Biochem. Biotechnol. 67: 185–198.Google Scholar
  15. Rogers PL, Tribe DE (1983) Ethanol production. US Patent No. 4,403,034.Google Scholar
  16. Schell DJ, Farmer J, Newman M, McMillan J (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibility of solids. Appl. Biochem. Biotechnol. 105-108: 69–85.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ali Mohagheghi
    • 1
  • Nancy Dowe
    • 1
  • Daniel Schell
    • 1
  • Yat-Chen Chou
    • 1
  • Christina Eddy
    • 1
  • Min Zhang
    • 1
  1. 1.National Bioenergy Center, National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations