Advertisement

Biochemical Genetics

, Volume 42, Issue 9–10, pp 347–363 | Cite as

Quantitative Trait Locus Analysis of Plasma Cholesterol and Triglyceride Levels in C57BL/6J × RR F2 Mice

  • Jun-ichi Suto
  • Yuji Takahashi
  • Kenji Sekikawa
Article

Abstract

A highly significant cholesterol quantitative trait locus (QTL) (Cq6) was identified on chromosome 1 in C57BL/6J × RR F2 mice. The Cq6 was located over the gene for apolipoprotein A-II (Apoa2), and the RR allele was associated with increased plasma cholesterol. C57BL/6J has Apoa2a alleles and RR has Apoa2b alleles. Three different Apoa2 alleles are known on the basis of amino acid substitutions at four residues. Analysis with partial Apoa2 congenic strains possessing Apoa2a, Apoa2b, and Apoa2c alleles revealed that the Apoa2b allele is unique in the ability to increase cholesterol among the three Apoa2 alleles, and that the Ala-to-Val substitution at residue 61 may be crucial as far as cholesterol metabolism is concerned. We also investigated the question of whether the Apoa1 gene is responsible for the cholesterol QTLs (Cq4 and Cq5) that had been identified previously on chromosome 9 in C57BL/6J × KK-Ay/a F2 and in KK × RR F2, but not in C57BL/6J × RR F2 mice. Similar to Apoa2 alleles, three different Apoa1 alleles with two successive amino acid substitutions were revealed among the strains. However, we could not correlate Apoa1 polymorphisms with the occurrence of QTLs in these three sets of F2 mice.

quantitative trait locus (QTL) cholesterol triglyceride apolipoprotein A-I (Apoa1apolipoprotein A-II (Apoa2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anunciad, R.V., ohno, T., Mori, M., Ishikawa, A., Tanaka, S., Horio, F., Nishimura, M., and Namikawa, T. (2000). Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp. Anim. 49:217.CrossRefPubMedGoogle Scholar
  2. Brockmann, G. A., Haley, C. S., Renne, U., Knott, S. A., and Schwerin, M. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150:369.PubMedGoogle Scholar
  3. Festing, M. F. W. (1996). Genetic Variants and Strains of the Laboratory Mouse, 3rd edn., Vol. 2, Oxford University Press, Oxford, pp. 1537–1576.Google Scholar
  4. Higuchi, K., Kitagawa, K., Naiki, H., Hanada, K., Hosokawa, M., and Takeda, T. (1991a). Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Biochem. J. 279:427.PubMedGoogle Scholar
  5. Higuchi, K., Naiki, H., Kitagawa, K., Hosokawa, M., and Takeda, T. (1991b). Mouse senile amyloidosis. ASSAM amyloidosis in mice presents universally as a systemic age-associated amyloidosis. Virchows Archiv B Cell Pathol. 60:231.Google Scholar
  6. Higuchi, K., Naiki, H., Kitagawa, K., Kitado, H., Kogishi, K., Matsushita, T., and Takeda, T. (1995). Apolipoprotein A-II gene and development of amyloidosis and senescence in a congenic strain of mice carrying amyloidogenic ApoA-II. Lab. Invest. 72:75.PubMedGoogle Scholar
  7. Innis-Whitehouse, W., Li, X., Brown, W.V., and Le, N. A. (1998). An efficient chromatographic system for lipoprotein ftactionation using whole plasma. J. Lipid Res. 39:679.PubMedGoogle Scholar
  8. Kim, J. H., Sen, S., Avery, C. S., Simpson, E., Chandler, P., Nishina, P., Churchill, G. A., and Naggert, J. K. (2001). Genetic analysis of a newmouse model for non-insulin-dependent diabetes. Genomics 74:273.CrossRefPubMedGoogle Scholar
  9. Lander, E., and Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241.CrossRefPubMedGoogle Scholar
  10. Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., and Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:24–174.Google Scholar
  11. Lusis, A. J., Taylor, B. A., Wangenstein, R. W., and LeBoeuf, R. C. (1983). Genetic control of lipid transport in mice II. Genes controlling structure of high density lipoproteins. J. Biol. Chem. 258:5071.Google Scholar
  12. Machleder, D., Ivandic, B., Welch, C., Castellani, L., Reue, K., and Lusis, A. J. (1997). Complex genetic control of HDL levels in mice in response to an atherogenic diet. J. Clin. Invest. 99:1406.PubMedGoogle Scholar
  13. Mahley, R. W., Innerarity, T. L., Rall, S. C., Jr., and Weisgraber, K. H. (1984). Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid Res. 25:1277.PubMedGoogle Scholar
  14. Mehrabian, M., Castellani, L. W., Wen, P.-Z., Wong, J., Rithaporn, T., Hama, S. Y., Hough, G. P., Johnson, D., Albers, J. J., Mottino, G. A., Frank, J. S., Navab, M., Fogelman, A. M., and Lusis, A. J., (2000). Genetic control of HDL levels and composition in an interspecific mouse cross (CAST/Ei × C57BL/6J). J. Lipid Res. 41:1936.PubMedGoogle Scholar
  15. Mehrabian, M., Qiao, J.-H., Hyman, R, Ruddle, D., Laughton, C., and Lusis, A. J. (1993). Influence of the ApoA-II gene locus on HDL levels and fatty streak development in mice. Arterioscler. Thromb. 13:1.PubMedGoogle Scholar
  16. Mehrabian, M., Wen, P.-Z., Fisler, J., Davis, R. C., and Lusis, A. J. (1998). Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J. Clin. Invest. 101:2485.PubMedGoogle Scholar
  17. Pitman, W. A., Korstanje, R., Churchill, G. A., Nicodeme, E., Albers, J. J., Cheung, M. C., Staton, M. A., Sampson, S. S., Harris, S., and Paigen, B. (2002). Quantitative trait locus mapping of genes that regulate HDL cholesterol in SM/J × NZB/BINJ inbred mice. Physiol. Genomics 9:93.PubMedGoogle Scholar
  18. Purcell-Huynh, D. A., Weinreb, A., Castellani, L. W., Mehrabian, M., Doolittle, M. H., and Lusis, A. J. (1995). Genetic factors in lipoprotein metabolism: Analysis of a genetic cross between inbred mouse strains NZB/BINJ and SM/J using a complete linkage map approach. J. Clin. Invest. 96:1845.PubMedGoogle Scholar
  19. Shike, T., Hirose, S., Kobayashi, M., Funabiki, K., Shirai, T., and Tomino, Y. (2001). Susceptibility and negative epistatic loci coptributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model. Diabetes 50:1943.PubMedGoogle Scholar
  20. Suto, J., Matsuura, S., Yamanaka, H., and Sekikawa, K. (1999). Quantitative trait loci that regulate plasma lipid concentration in hereditary obese KK and KK-A y mice. Biochim. Biophys. Acta 1453:385.PubMedGoogle Scholar
  21. Suto, J., and Sekikawa, K. (2003). Quantitative trait locus analysis of plasma cholesterol and triglyceride levels in KK × RR F2 mice. Biochem. Genet. 41:325.CrossRefPubMedGoogle Scholar
  22. Uchide, T., Onda, K., Bonkobara, M., Thongsong, B., Matsuki, N., Inaba, M., and Ono, K. (1999). Utilization of intestinal triglyceride-rich lipoproteins in mammary gland of cows. J. Vet. Med. Sci. 61:1143.CrossRefPubMedGoogle Scholar
  23. Wang, J., Kitagawa, K., Kitado, H., Kogishi, K., Matsushita, T., Hosokawa, M., and Higuchi, K. (1997). Regulation of the metabolism of plasma lipoproteins by apolipoprotein A-II. Biochim. Biophys. Acta 1345:248.PubMedGoogle Scholar
  24. Wang, X., and Paigen, B. (2002). Quantitative. trait loci and candidate genes regulating HDL cholesterol: A murine chromosome map. Atheroscler. Thromb. Vasco Biol. 22:1390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Department of Molecular Biology and ImmunologyNational Institute of Agrobiological SciencesTsukubaJapan
  2. 2.Department of Production DiseasesNational Institute of Animal HealthTsukubaJapan
  3. 3.Department of Molecular Biology and ImmunologyNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations