Biochemical Genetics

, Volume 42, Issue 7–8, pp 231–240

Gene Frequency Distribution of the BoLA-DRB3 Locus in Saavedreño Creole Dairy Cattle

  • M. V. Ripoli
  • J. P. Lirón
  • J. C. De Luca
  • F. Rojas
  • F. N. Dulout
  • G. Giovambattista


The objective of this study is to describe the gene frequency distribution of the bovine lymphocyte antigen (BoLA)-DRB3 locus in Saavedreño Creole dairy cattle and to compare it with previously reported patterns in other cattle breeds. One hundred and twenty-five Saavedreño Creole dairy cattle were genotyped for the BoLA-DRB3.2 allele by polymerase chain reaction and restriction fragment length polymorphism. Twenty-two out of 53 previously identified BoLA-DRB3.2 alleles were detected, with gene frequencies ranging from 0.4 to 16.8%. Seventy percent of the variation corresponded to the seven most frequent alleles (BoLA-DRB3.2*7, *8, *11, *16, *27, *36, and *37). The studied population exhibits a high degree of expected heterozygosity (he = 0.919). The FIS index did not show significant deviation from Hardy-Weinberg equilibrium. However, the neutrality test showed an even gene frequency distribution. This result could be better explained assuming balancing selection instead of neutral or positive selection for one or a few alleles. In conclusion, the results of this study demonstrated that BoLA-DRB3.2 is a highly polymorphic locus in Saavedreño Creole dairy cattle, with significant variation in allele frequency among cattle breeds.

BoLA-DRB3.2 Creole cattle PCR-RFLP genetic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravindakshan, T. V., and Nainar, A. M. (1999). Genetic polymorphism of the BoLA-DRB3 gene in Jersey crossbred and Ongole cattle revealed by PCR-RFLP. J. Anim. Sci. 69:424–427.Google Scholar
  2. Black, F. L., and Salzano, F. M. (1983). Evidence for heterosis in the HLA system. Am. J. Hum. Genet. 33:894–899.Google Scholar
  3. Boyce, W. M., Hedrick, P. W., Muggli-Cockett, N. E., Kalinowski, S., Penedo, M. C. T., and Ramey, R., II (1996). Genetic variation of major histocompatibility complex and microsatellite loci: A comparison in Bighorn sheep. Genetics 145:421–433.Google Scholar
  4. Burke, M. G., Stone, R. T., and Muggli-Cockett, N. E. (1991). Nucleotide sequence and northern analysis of a bovine major histocompatibility class II DRβ-like cDNA. Anim. Genet. 22:343–352.PubMedGoogle Scholar
  5. Dietz, A. B., Cohen, N. D., Timms, L., and Kehrli, M. E., Jr. (1997a). Bovine lymphocite antigen class II alleles as risk factors for high somatic cell counts in milk lactating dairy cows. J. Dairy Sci. 80:406–412.PubMedGoogle Scholar
  6. Dietz, A. B., Detilleux, J. C., Freeman, A. E., Kelly, D. H., Stabel, J. R., and Kehrli, M. E., Jr. (1997b). Genetic association of bovine lymphocite antigen DRB3 alleles with immunological traits of Holstein cattle. J. Dairy Sci. 80:400–405.PubMedGoogle Scholar
  7. Ellis, S. A., and Ballingall, K. T. (1999). Cattle MHC: Evolution in action? Immunol. Rev. 167:159–168.PubMedGoogle Scholar
  8. Gilliespie, B. E., Jayarao, B. M., Dowlen, H. H., and Oliver, S. P. (1999). Analysis and frequency of Bovine Lymphocyte Antigen DRB3.2alleles in Jersey cows. J. Dairy Sci. 82:2049–2053.PubMedGoogle Scholar
  9. Giovambattista, G., Golijow, C. D., Dulout, F. N., and Lojo, M. M. (1996). Gene frequencies of DRB3.2 locus of Argentine Creole cattle. Anim. Genet. 27:55–56.PubMedGoogle Scholar
  10. Golijow, C. D. (1996). Estudio de la reducción de la variabilidad genética por acción de la selección artificial en poblaciones de Bos taurus, PhD Thesis, Universidad Nacional de La Plata, Argentina.Google Scholar
  11. Gou, S. W., and Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372.PubMedGoogle Scholar
  12. Hedrick, P. W. (1994). Evolutionary genetics of the major histocompatibility complex. Am. Nat. 143:945–964.Google Scholar
  13. Hedrick, P. W., Whittam, T. S., and Parham, P. (1991). Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A and HLA-B genes. Proc. Natl. Acad. Sci. 88:5897–5901.PubMedGoogle Scholar
  14. Hughes, A. L., and Nei, M. (1989). Nucleotide substitution at major histocompatibility complex class II loci: Evidence for over-dominant selection. Proc. Natl. Acad. Sci. U.S.A. 86:958–962.PubMedGoogle Scholar
  15. Kantanen, J., Olsaker, I., Holm, L. E., Lien, S., Vilkki, J., Brusgaard K., Eythorsdottir, E., Danell, B., and Adalsteinsson, S. (2000). Genetic diversity and population structure of 20 north European cattle breeds. J. Hered. 91(6):446–457.PubMedGoogle Scholar
  16. Klein J. (1986). Natural History of the Major Histocompatibility Complex, Wiley, New York.Google Scholar
  17. Lewin, H. A. (1994). Host genetic mechanism of resistance and susceptibility to a bovine retroviral infection. Anim. Biotechnol. 5:183–191.Google Scholar
  18. Lewin, H. A., and Bernoco, D. (1986). Evidence for BoLA-linked resistance and susceptibility to subclinical progression of bovine leukaemia virus infection. Anim. Genet. 17:197–207.PubMedGoogle Scholar
  19. Maillard, J. C., Renard, C., Chardon, P., Chantal, Y., and Bensaid, A. (1999). Characterization of 18 new BoLA-DRB3alleles. Anim. Genet. 30:200–203.PubMedGoogle Scholar
  20. Markow, T., Hedrick, P. W., Zuerlein, K., Danilows, J., Martin, J., Vyvial, T., and Armstrong, C. (1993). HLA polymorphism in the Havasupai: Evidence for balancing selection. Am. J. Hum. Genet. 53:943–952.PubMedGoogle Scholar
  21. Mikko, S., Røed, K., Schmutz, S., and Andersson, L. (1999). Monomorphism and polymorphism at MCH DRBloci in domestic and wild rumiants. Immunol. Rev. 167:169–178.PubMedGoogle Scholar
  22. Nei, M., and Roychoudhury, A. K. (1974). Sampling variances of heterozigosity and genetic distance. Genetics 76:379–390.PubMedGoogle Scholar
  23. Paterson, S., Wilson, K., and Pemberton, J. M. (1998). Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis ariesL.). Proc. Natl. Acad. Sci. U.S.A. 95:3714–3719.PubMedGoogle Scholar
  24. Potts, W. K., Manning, C. J., and Wakeland, E. K. (1991). MHC genotype influences matting patterns in semi-natural populations of Mus. Nature (Lond.) 354:453.Google Scholar
  25. Schmutz, S. M., Berryere, T. G., Robbins, J.W., and Carruthers, T. D. (1992). Resistance to Staphylococcus aureusmastitis detected by DNA markers. In Proc. 31st Annu. Mtg. Natl. Mastitis Counc., Arlington, VA., Natl. Mastitis Counc., Inc., Madison, WI, pp. 124–133.Google Scholar
  26. Schneider, S., Roessli, D., and Excoffier, L. (2000). Arlequin: a Software for Population Genetic Data Analysis, Ver. 2.000, University of Geneva, Geneva.Google Scholar
  27. Sharif, S., Mallard, B. A., Wilkie, B. N., Sardeant, J. M., Scott, H. M., Dekkers, J. C. M., and Leslie, K. E. (1998). Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim. Genet. 29:185–193.PubMedGoogle Scholar
  28. Slatkin, M. A. (1996). Correction to the exact test based on the Ewens sampling distribution. Genet. Res. 68:259–260.PubMedGoogle Scholar
  29. Udina, I. G., Haramyshera, E. E., Sulimova, G. E., Pavlenko, S. P., Turkova, S. O., Orlova, A. R., and Ernst, L. K. (1998). Comparative analysis of Ayrshire and Black Pied cattle breeds by histocompatibility markers. Genetika 34(12):1668–1674.PubMedGoogle Scholar
  30. van Eijk, M. J. T., Stewart-Haynes, J. A., and Lewin, H. A. (1992). Extensive poly morphism of the BoLA-DRB3gene distinguished by PCR-RFLP. Anim. Genet. 23:483–496.PubMedGoogle Scholar
  31. Wedekind, C., and Furi, S. (1997). Body odour preferences in men and women: Do they aim for specificMHCcombinations or simply heterozygosity? Proc. R. Soc. Lond. B. Biol. Sci. 264(1387): 1471–9.PubMedGoogle Scholar
  32. Weir, B. C., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. Zanotti, M., Poli, G., Ponti,W., Polli, M., Rocchi, M., Bolzani, E., Longeri, M., Russo, S., Lewin, H. A., and van Eijk, M. J. T. (1996). Association of BoLA class II haplotypes with subclinical progression of bovine leukaemia virus infection in Holstein-Friesian cattle. Anim. Genet. 27:337-341.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. V. Ripoli
    • 1
  • J. P. Lirón
    • 1
  • J. C. De Luca
    • 1
  • F. Rojas
    • 2
  • F. N. Dulout
    • 1
  • G. Giovambattista
    • 1
  1. 1.Centro de Investigaciones en Genética Básica y Aplicada (CIGEBA), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
  2. 2.Av. Ejercito Nacional 131Santa Cruz de la SierraBolivia

Personalised recommendations