Behavior Genetics

, Volume 34, Issue 4, pp 425–439 | Cite as

Genetic Segregation of Brain Gene Expression Identifies Retinaldehyde Binding Protein 1 and Syntaxin 12 as Potential Contributors to Ethanol Preference in Mice

  • Julie A. Treadwell
  • Kara B. Pagniello
  • Shiva M. Singh
Article

Abstract

Genetic strains of mice represent an important resource for research on the biological determinants of complex diseases and behavioral phenotypes. To date, the approaches used have had little success in identifying causal genes. We have evaluated brain gene expression in C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains using differential display to identify a number of sequences showing significant expression differences between the two strains. These differences were confirmed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Knowing that B6 and D2 mouse strains differ for a number of behavioral phenotypes, we asked whether this difference in brain gene expression could explain any of these traits. Here, we show that the expression of two of these genes, retinaldehyde binding protein 1 (Rlbp1) and syntaxin 12 (Stx12), co-segregate with the ethanol preference phenotype in a B6D2 F2 population. Our results suggest a potential role for Rlbp1 and Stx12 in ethanol preference in mice, a conclusion supported by the location of these genes in quantitative trait loci (QTL) regions for this phenotype. This experimental approach has the potential for a broad application in the assessment of the roles of differentially expressed genes in a variety of complex phenotypes, with the advantage of identifying novel and potentially causal candidate genes directly.

B6D2 F2 intercross ethanol preference gene expression mice retinaldehyde binding protein 1 syntaxin 12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, M., Waada, M., Gelfman, C. M., Handa, J. T., and Hjelmeland, L. M. (2001). Downregulation of differentiation specific gene expression by oxidative stress in ARPE-19 cells. Invest. Ophthalmol. Vis. Sci. 42:2706-2713.Google Scholar
  2. Bachmanov, A. A., Reed, D. R., Li, X., Li, S., Beauchamp, G. K., and Tordoff, M. G. (2002). Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ × 129P3/J F2 intercross. Genome Res. 12:1257-1268.Google Scholar
  3. Bachtell, R. K., Weitmier, A. Z., Galvan-Rosas, A., Tsivkovskaia, N. O., Risinger, F. O., Phillips, T. J., Grahame, N. J., and Ryabinin, A. E. (2003). The Edinger-Westphal-lateral septum urocortin pathway and its relationship to alcohol consumption. J. Neurosci. 23:2477-2487.Google Scholar
  4. Belknap, J. K., Crabbe, J. C., and Young, E. R. (1993a). Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology (Berl.) 112:503-510.Google Scholar
  5. Belknap, J. K., Metten, P., Helms, M. L., O'Toole, L. A., Angeli-Gade, S., Crabbe, J. C., and Phillips, T. J. (1993b). Quantitative trait loci (QTL) applications to substances of abuse: physical dependence studies with nitrous oxide and ethanol in BXD mice. Behav. Genet. 23:213-222.Google Scholar
  6. Browman, D. E., and Crabbe, J. C. (2000). Quantitative trait loci affecting ethanol sensitivity in BXD recombinant inbred mice. Alcohol. Clin. Exp. Res. 24:17-23.Google Scholar
  7. Buck, K. J., Rademacher, B. L. S., Metten, P., and Crabbe, J. C. (2002). Mapping murine loci for physical dependence on ethanol. Psychopharmacology (Berl.) 160:398-407.Google Scholar
  8. Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.Google Scholar
  9. Cowen, M. S., Schroff, K-C., Gass, P., Sprengel, R., and Spanagel, R. (2003). Neurobehavioral effects of alcohol in AMPA receptor subunit (GluR1) deficient mice. Neuropharmacology 45:325-333.Google Scholar
  10. Crabbe, J. C. (2002). Alcohol and genetics: new models. Am. J. Med. Genet. 114:969-974.Google Scholar
  11. Daniels, G. M., and Buck, K. J. (2002). Expression profiling identifies strain-specific changes associated with ethanol withdrawal in mice. Genes Brain Behav. 1:35-45.Google Scholar
  12. Demarest, K., McCaughran, J., Mahjubi, E., Cipp, L., and Hitzemann, R. (1999). Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J. Neurosci. 19:549-561.Google Scholar
  13. Eichers, E. R., Green, J. S., Stockton, D. W., Jackman, C., Whelan, J., McNamara, J. A., Johnson, G. J., Lupski, J. R., and Katsanis, N. (2002). Newfoundland rod-cone dystrophy, an early onset, severe retinal dystrophy caused by splice junction mutations in RLBP1. Am. J. Hum. Genet. 70:955-964.Google Scholar
  14. Fernandez, J. R., Vogler, G. P., Tarantino, L. M., Vignetti, S., Plomin, R., and McClearn, G. E. (2001). Sex-exclusive quantitative trait loci influences in alcohol-related phenotypes. Am. J. Med. Gen. 88:647-652.Google Scholar
  15. Gehle, V. M., and Erwin, G. (1998). Common quantitative trait loci for alcohol-related behaviors and CNS neurotensin measures: voluntary ethanol consumption. Alcohol. Clin. Exp. Res. 22:401-408.Google Scholar
  16. Gerlai, R. (2002). Phenomics: fiction or future? Trends Neurosci. 25:506-509.Google Scholar
  17. Grahame, N. J., Li, T-K., and Lumeng, L. (1999). Selective breeding for high and low alcohol preference in mice. Behav. Genet. 29:47-57.Google Scholar
  18. Harrison, M., and Singh, S. M. (2002). Genetics and differential expression of NADH:Ubiquinone oxidoreductase B8 subunit in brains of genetic strains of mice differing in voluntary alcohol consumption (VAC). Biochim. Biophys. Acta 1579:164-172.Google Scholar
  19. Heath, P. R., and Shaw, P. J. (2002). Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438-458.Google Scholar
  20. Hirling, H., Steiner, P., Chaperon, C., Marsault, R., Regazzi, R., and Catsicas, S. (2000). Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur. J. Neurosci. 12:1913-1923.Google Scholar
  21. Inoue, K., and Lupski, J. R. (2003). Genetics and genomics of behavioural and psychiatric disorders. Curr. Opin. Genet. Dev. 13:303-309.Google Scholar
  22. Kennedy, B. N., Li, C., Ortego, J., Coca-Prados, M., Sarthy, V. P., and Crabb, J. W. (2003). CRALBP transcriptional regulation in ciliary epithelial, retinal Müller and retinal pigment epithelial cells. Exp. Eye Res. 76:257-260.Google Scholar
  23. Krystal, J. H., Petrakis, I. L., Mason, G., Trevisan, L., and D'Souza, D. C. (2003). N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol. Ther. 99:79-94.Google Scholar
  24. Lee, S. H., Valtschanoff, J. G., Kharazia, V. N., Weinberg, R., and Sheng, M. (2001). Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology 41:680-692.Google Scholar
  25. Lewohl, J. M., Wang, L., Miles, M. F., Zhang, L., Dodd, P. R., and Harris, R. A. (2000). Gene expression in human alcoholism: microarray analysis in frontal cortex. Alcohol. Clin. Exp. Res. 24:1873-1882.Google Scholar
  26. Lin, N., and Hubbard, J. I. (1995). An NMDA receptor antagonist reduces ethanol preference in untrained but not trained rats. Brain Res. Bull. 36:421-424.Google Scholar
  27. Loney, K., Uddin, K. R., and Singh, S. M. (2003). Strain-specific brain metallothionein (MT-II) gene expression, its ethanol responsiveness, and association with voluntary alcohol consumption (VAC) in mice. Alcohol. Clin. Exp. Res. 27:388-395.Google Scholar
  28. Mayfield, R. D., Lewohl, J. M., Dodd, P. R., Herlihy, A., Liu, J., and Harris, R. A. (2002). Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J. Neurochem. 81:802-813.Google Scholar
  29. McClearn, G. E., and Rodgers, D. A. (1959). Differences in alcohol preference among inbred strains of mice. Q. J. Stud. Alcohol 20:691-695.Google Scholar
  30. McVicker, B. L., and Casey, C. A. (1999). Ethanol-impaired hepatic protein trafficking: concepts from the asialoglycoprotein receptor system. Clin. Biochem. 32:557-561.Google Scholar
  31. Meliska, C. J., Bartke, A., McGlacken, G., and Jensen, R. A. (1995). Ethanol, nicotine, amphetamine, and aspartame consumption and preferences in C57BL/6 and DBA/2 mice. Pharmacol. Biochem. Behav. 50:619-626.Google Scholar
  32. Melo, J. A., Shendure, J., Pociask, K., and Silver, L. M. (1996). Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nat. Genet. 13:147-153.Google Scholar
  33. Murphy, B. C., Chiu, T., Harrison, M., Uddin, R. K., and Singh, S. M. (2002). Examination of ethanol responsive liver and brain specific gene expression, in the mouse strains with variable ethanol preferences, using cDNA expression arrays. Biochem. Genet. 40:395-410.Google Scholar
  34. Nagy, L. E., Lakshman, M. R., Casey, C. A., and Bearer, C. F. (2002). Ethanol and membrane protein trafficking: diverse mechanisms of ethanol action. Alcohol. Clin. Exp. Res. 26:287-293.Google Scholar
  35. Nguyen, P. V., and Gerlai, R. (2002). Behavioural and physiological characterization of inbred mouse strains: prospects for elucidating the molecular mechanisms of mammalian learning and memory. Genes Brain Behav. 1:72-81.Google Scholar
  36. Paigen, K., and Eppig, J. T. (2000). A mouse phenome project. Mamm. Genome 11:715-717.Google Scholar
  37. Phillips, T. J., Crabbe, J. C., Metten, P., and Belknap, J. K. (1994). Localization of genes affecting alcohol drinking in mice. Alcohol. Clin. Exp. Res. 18:931-941.Google Scholar
  38. Prekeris, R., Klumperman, J., Chen, Y. A., and Scheller, R. H. (1998). Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143:957-971.Google Scholar
  39. Rijk, H., Crabbe, J. C., and Rigter, H. (1982). A mouse model of alcoholism. Physiol. Behav. 29:833-839.Google Scholar
  40. Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., and McClearn, G. E. (1994). Alcohol acceptance, preference, and sensitivity in mice. I. Quantitative trait loci mapping analysis using BXD recombinant inbred strains. Alcohol. Clin. Exp. Res. 18:1416-1422.Google Scholar
  41. Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., and McClearn, G. E. (1995). Alcohol acceptance, preference, and sensitivity in mice. II. Quantitative trait loci mapping analysis using BXD recombinant inbred strains. Alcohol. Clin. Exp. Res. 19:367-373.Google Scholar
  42. Saari, J. C., Nawrot, M., Kennedy, B. N., Garwin, G. G., Hurley, J. B., Huang, J., Possin, D. E., and Crabb, J. W. (2001). Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739-48.Google Scholar
  43. Saito, M., Smiley, J., Toth, R., and Vadasz, C. (2002). Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem. Res. 27:1221-1229.Google Scholar
  44. Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., Mayford, M., Lockhart, D. J., and Barlow, C. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl. Acad. Sci. USA. 97:11038-11043.Google Scholar
  45. Sarria, J-C. F., Catsicas, S., Hornung, J-P., and Hirling, H. (2002). Developmental and spatial expression pattern of syntaxin 13 in the mouse central nervous system. Cell Tissue Res. 309:309-218.Google Scholar
  46. Schreiber, R., and Freund, W-D. (2000). Glutamate transport is downregulated in the cerebral cortex of alcohol-preferring rats. Med. Sci. Monit. 6:649-652.Google Scholar
  47. Shelton, K. L., and Grant, K. A. (2002). Discriminative stimulus effects of ethanol in C57BL/6J and DBA/2J inbred mice. Alcohol. Clin. Exp. Res. 26:747-757.Google Scholar
  48. Tabakoff, B., Bhave, S. V., and Hoffman, P. L. (2003). Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J. Neurosci. 23:4491-4498.Google Scholar
  49. Tarantino, L. M., McClearn, G. E., Rodriguez, L. A., and Plomin, R. (1998). Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol. Clin. Exp. Res. 22:1099-1105.Google Scholar
  50. Tecott, L. H. (2003). The genes and brains of mice and men. Am. J. Psychiatry 160:646-656.Google Scholar
  51. Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., Dong, H., Hodge, C. W., Lockhart, D. J., and Miles, M. F. (2000). Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol. Pharmacol. 52:1593-1600.Google Scholar
  52. Treadwell, J. A., and Singh, S. M. (2004). Microarray analysis of mouse brain gene expression following acute ethanol treatment. Neurochem. Res. 29:357-369.Google Scholar
  53. Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K. M., Koster, H. J., Borchardt, T., Worley, P., Lubke, J., Frotscher, M., Kelly, P. H., Sommer, B., Andersen, P., Seeburg, P. H., and Sakmann, B. (1999). Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805-1811.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Julie A. Treadwell
    • 1
  • Kara B. Pagniello
    • 1
  • Shiva M. Singh
    • 1
  1. 1.Department of Biology and Division of Medical GeneticsUniversity of Western OntarioLondonCanada

Personalised recommendations