Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 136, Issue 6, pp 585–587 | Cite as

Effect of Extracts from Rhodiola Rosea and Rhodiola Crenulata (Crassulaceae) Roots on ATP Content in Mitochondria of Skeletal Muscles

  • M. Abidov
  • F. Crendal
  • S. Grachev
  • R. Seifulla
  • T. Ziegenfuss
Article

Abstract

We studied the effects of oral treatment with extracts from Rhodiola rosea (50 mg/kg) and Rhodiola crenulata (50 mg/kg) roots on the duration of exhaustive swimming and ATP content in mitochondria of skeletal muscles in rats. Treatment with R. rosea extract significantly (by 24.6%) prolonged the duration of exhaustive swimming in comparison with control rats and rats treated with R. crenulata. R. rosea extract activated the synthesis or resynthesis of ATP in mitochondria and stimulated reparative energy processes after intense exercise. Experiments proved different pharmacological characteristics of R. rosea and R. crenulata: R. rosea is most effective for improving physical working capacity.

ATP mitochondria Rhodiola rosea Rhodiola crenulata rosavines salidroside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. P. Azizov and R. D. Seifulla, Eksp. Klin. Farmakol., 61, No. 3, 61-63 (1998).Google Scholar
  2. 2.
    A. G. Dubichev, B. A. Kurkin, G. G. Zapesochnaya, et al., Khim.-Farm. Zh., 2, 188-193 (1991).Google Scholar
  3. 3.
    B. A. Kurkin and G. G. Zapesochnaya, Ibid., 20, No. 10, 1231-1244 (1986).Google Scholar
  4. 4.
    R. D. Seifulla, Sports Pharmacology. Manual [in Russian], Moscow (1999), P. 90.Google Scholar
  5. 5.
    R. Brown, P. Gerbard, and Z. Ramazanov, Herbal Gram., 56, 40-52 (2002).Google Scholar
  6. 6.
    C. P. Lambert and M. G. Flynn, Sports Med., 32, No. 8, 511-522 (2002).Google Scholar
  7. 7.
    M. B. Lazarova, V. D. Petkov, V. L. Markovska, et al., Methods Find. Exp. Clin. Pharmacol., 8, No. 9, 547-552 (1986).Google Scholar
  8. 8.
    P. T. Lihn, Y. H. Kim, S. P. Hong, et al., Arch. Pharm. Res., 23, No. 4, 349-352 (2000).Google Scholar
  9. 9.
    V. D. Petkov, D. Yonkov, A. Mosharoff, et al., Acta Physiol. Pharmacol. Bulg., 12, No. 1, 3-16 (1996).Google Scholar
  10. 10.
    V. A. Shevtsov, B. I. Zholus, V. I. Shervarly, et al., Phytomedicine, 10, No. 2-3, 95-105 (2003).Google Scholar
  11. 11.
    A. A. Spasov, A. Wikman, V. Mandrikov, et al., Phytomedicine, 7, No. 2, 85-89 (2000).Google Scholar
  12. 12.
    M. Tonkonogi, B. Walsh, T. Tiivel, et al., Pflugers Arch., 437, No. 4, 562-568 (1999).Google Scholar
  13. 13.
    M. Yoshikawa, H. Shimada, H. Shimoda, et al., Chem. Pharm. Bull. (Tokyo), 44, No. 11, 2086-2091 (1996).Google Scholar
  14. 14.
    S. Wang, X. T. You, and F. P. Wang, Yao Xue Xue Pao, 27, No. 11, 849-852 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. Abidov
    • 1
    • 2
    • 3
    • 4
  • F. Crendal
    • 1
    • 2
    • 3
    • 4
  • S. Grachev
    • 1
    • 2
    • 3
    • 4
  • R. Seifulla
    • 1
    • 2
    • 3
    • 4
  • T. Ziegenfuss
    • 1
    • 2
    • 3
    • 4
  1. 1.Russian Academy of Natural SciencesInstitute of ImmunopathologyMoscow
  2. 2.I. M. Setchenov Medical AcademyMoscow
  3. 3.Russian Center for Higher Athletic EducationMoscow
  4. 4.Wordsworf Medical CenterHigher Institute of Human Health and ActivitiesUSA

Personalised recommendations