Advertisement

Autonomous Robots

, Volume 17, Issue 2–3, pp 193–221 | Cite as

Swarm-Bot: A New Distributed Robotic Concept

  • Francesco Mondada
  • Giovanni C. Pettinaro
  • Andre Guignard
  • Ivo W. Kwee
  • Dario Floreano
  • Jean-Louis Deneubourg
  • Stefano Nolfi
  • Luca Maria Gambardella
  • Marco Dorigo
Article

Abstract

The swarm intelligence paradigm has proven to have very interesting properties such as robustness, flexibility and ability to solve complex problems exploiting parallelism and self-organization. Several robotics implementations of this paradigm confirm that these properties can be exploited for the control of a population of physically independent mobile robots.

The work presented here introduces a new robotic concept called swarm-bot in which the collective interaction exploited by the swarm intelligence mechanism goes beyond the control layer and is extended to the physical level. This implies the addition of new mechanical functionalities on the single robot, together with new electronics and software to manage it. These new functionalities, even if not directly related to mobility and navigation, allow to address complex mobile robotics problems, such as extreme all-terrain exploration.

The work shows also how this new concept is investigated using a simulation tool (swarmbot3d) specifically developed for quickly designing and evaluating new control algorithms. Experimental work shows how the simulated detailed representation of one s-bot has been calibrated to match the behaviour of the real robot.

swarm intelligence swarm robotics distributed robotics reconfigurable robotics collective robotics physics-based simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agassounon, W., Martinoli, A., and Goodman, R. 2001. A scalable, distributed algorithm for allocating workers in embedded systems. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, IEEE Press: Piscataway, NewJersey, USA, pp. 3367–3373.Google Scholar
  2. Agrawal, S.K., Kissner, L., and Yim, M. 2001. Joint solutions of many degrees-of-freedom systems using dextrous workspaces. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001), Kwon et al. (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 2480–2485.Google Scholar
  3. Ayers, J., Zavracky, P., McGruer, N., Massa, D.P., Vorus, W.S., Mukherjee, R., and Currie, S.N. 1998. A modular behavioralbased architecture for biomimetic autonomous underwater robots. In Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium, Naval Postgraduate School: Monterey, California, USA.Google Scholar
  4. Balch, T. 1998. Behavioral diversity in learning robot teams. PhD thesis. Georgia Institute of Technology. Atlanta, Georgia, USA.Google Scholar
  5. Bares, J. and Wettergreen, D. 1999. Dante II: Technical description, results and lessons learned. International Journal of Robotics Research, 18(7):621–649.Google Scholar
  6. Blanke, M., Izadi-Zamanabadi, R., Bøgh, S., and Lunau, C. 1997. Fault tolerant control systems-A holistic view. Control Engineering Practice, 5(5):693–702.Google Scholar
  7. Bonabeau, E., Dorigo, M., and Theraulaz, G. 1999. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press: New York, NY.Google Scholar
  8. Callen, J.N. 1998. Distributed control enables flexible intelligent system development. IEEE Intelligent Systems, 13(4):14–17.Google Scholar
  9. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., and Bonabeau, E. 2001. Self-Organisation in Biological Systems. Princeton University Press: Princeton, New Jersey, USA.Google Scholar
  10. Casper, J., Murphy, R.R., and Micire, M. 2000. Issues in intelligent robots for search and rescue. In Proceedings of the SPIE Unmanned Ground Vehicle Technology II, vol. 4024, R.W.G. Grant, R. Gerhart, and C.M. Shoemaker (Eds.), Orlando, Florida, USA, SPIE, Bellingham WA, USA, pp. 292–302.Google Scholar
  11. Castano, A., Shen, W.-M., and Will, P. 2000. CONRO: Towards deployable robots with inter-robot metamorphic capabilities. Autonomous Robots, 8:309–324.Google Scholar
  12. Chaimowicz, L., Campos, M., and Kumar, V. 2001. Simulating loosely and tightly coupled multi-robot cooperation. In V Brazilian Symposium on Intelligent Automation (SBAI), Canela, RS, Brazil.Google Scholar
  13. Chien, S., Barrett, A., Estlin, T., and Rabideau, G. 2000. Three coordinated planning methods for cooperating rovers. In Intelligent Automation and Control, Proceedings of the International Symposium on Intelligent Automation and Control, World Automation Congress (ISIAC-WAC, Maui, Hawaii, USA), vol. 9. TSI Press: Albuquerque, NM, USA.Google Scholar
  14. Clavel, R. 1988. Delta, a fast robot with parallel geometry. In Proceedings of the 18th International Symposium on Industrial Robots (ISIR '88), C.W. Burckhardt (Ed.), Springer Verlag, Berlin, Germany, pp. 91–100.Google Scholar
  15. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrin, C., and Chatier, L., 1991. The dynamics of collective sorting: Robot-like ant and ant-like robot. In Simulation of Adaptive Behavior: From Animals to Animats, J.A. Mayer and S.W. Wilson (Eds.), MIT Press: Boston, Massachusetts, USA, pp. 356–365.Google Scholar
  16. Detrain, C. and Deneubourg, J.-L. 1997. Scaveging by pheidole pallidula: A key for understanding decision-making systems in ants. Animal Behaviour, 53:537–547.Google Scholar
  17. Dorigo, M., Trianni, V., ?ahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L.M. 2004. Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2/3):223–245.Google Scholar
  18. Duff, D., Yim, M., and Roufas, K. 2001. Evolution of PolyBot: A modular reconfigurable robot. In Proceedings of COE/Super-Mechano-Systems Workshop, Tokyo, Japan.Google Scholar
  19. Earon, E.J.P., Barfoot, T.D., and D'Eleuterio, G.M.T. 2001. Development of a multiagent robotic system with application to space exploration. In Proceedings of 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, IEEE Press: Piscataway, New Jersey, USA, pp. 1267–1272.Google Scholar
  20. Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Piguet, R., and Siegwart, R. 2000. An innovative space rover with extended climbing abilities. In Robotics 2000. Proceedings of the ASCE Conference on Robotics for Challenging Environments, W.C. Stone (Ed.), ASCE, American Society of Civil Engineers, Reston, VA, pp. 333–339.Google Scholar
  21. Flocchini, P., Prencipe, G., Santoro, N., and Widmayer, P. 2000. Distributed coordination of a set of autonomous mobile robots. In Proceedings of the 4th IEEE Intelligent Vehicles Symposium, (IVS 2000), IEEE Press: Piscataway, New Jersey, USA, pp. 480–485.Google Scholar
  22. Fukuda, T., Mizoguchi, H., Sekiyama, K., and Arai, F. 1999. Group behavior control for MARS (micro autonomous robotic system). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '99), IEEE Press: Piscataway, New Jersey, USA, pp. 1550–1555.Google Scholar
  23. Gerkey, B.P. and Matari?, M.J. 2002. Pusher-watcher: An approach to fault-tolerant tightly-coupled robot coordination. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002). IEEE Press: Piscataway, New Jersey, USA.Google Scholar
  24. Gerkey, B.P., Vaughan, R.T., Støy, K., Howard, A., Sukhtame, G.S., and Matari?, M.J. 2001. Most valuable player: A robot device server for distributed control. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) vol. 2, T.J. Tarnet et al. (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 1226–1231.Google Scholar
  25. Goldberg, D. and Matari?, M.J. 2002. Design and evaluation of robust behavior-based controllers. In Robot Teams: From Diversity to Polymorphism, T. Balch and L.E. Parker (Eds.), A.K. Peters, Natick MA USA, pp. 315–344.Google Scholar
  26. Groß, R. and Dorigo, M. 2004. Evolving a cooperative transport behavior for two simple robots. In Artificial Evolution-6th International Conference, Evolution Artificielle, EA 2003, P. Liardet, P. Collet, C. Fonlupt, E. Lutton, and M. Schoenauer (Eds.), vol. 2936 of Lecture Notes in Computer Science, Springer Verlag, Berlin, Germany, pp. 305–317.Google Scholar
  27. Hayes, A.T., Martinoli, A., and Goodman, R.M. 2001. Swarm robotic odor localization. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) vol. 2, T.J. Tarnet et al. (Eds.), IEEE Press: Piscataway, New Jersey, pp. 1073–1078.Google Scholar
  28. Kamimura, A., Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., and Kokaji, S. 2001. Self-reconfigurable modular robot-experiments on reconfiguration and locomotion. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2001, vol. 1, T.J. Tarnet et al. (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 606–612.Google Scholar
  29. Khosla, P., Brown, B., Paredis, C., Grabowski, B., Navarro, L., Bererton, C., and Vandeweghe, M. 2002. Millibot report. Report on millibot project, darpa contract DABT63-97-1-0003, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.Google Scholar
  30. Kube, C.R. and Bonabeau, E. 2000. Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1/2):85–101.Google Scholar
  31. Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., and Murata, S. 2003. M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS 2003), C.S.G. Lee and J. Yuh (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 2454–2459.Google Scholar
  32. Lioni, A., Sauwens, C., Theraulaz, G., and Deneubourg, J.-L. 2001. Chain formation in oecophylla longinoda. Journal of Insect Behaviour, 15:679–696.Google Scholar
  33. MacKenzie, D.C., Arkin, R.C., and Cameron, J.M. 1997. Multi-agent mission specification and execution. Autonomous Robots, 4(1):29–52.Google Scholar
  34. Martinoli, A., Ijspeert, A.J., and Mondada, F. 1999. Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29:51–63.Google Scholar
  35. Matthies, L., Xiong, Y., Hogg, R., Zhu, D., Rankin, A., Kennedy, B., Hebert, M., Maclachlan, R., Won, C., Frost, T., Sukhatme, G.S., McHenry, M., and Goldberg, S. 2002. A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems, 40:163–172.Google Scholar
  36. Melhuish, C. 1999. Exploiting domain physics: Using stigmergy to control cluster building with real robots. In Proceedings of the 5th European Conference on Artificial Life (ECAL '99), D. Floreano, J.-D. Nicoud, and F. Mondada (Eds.), Springer Verlag, Berlin, Germany, pp. 585–595.Google Scholar
  37. Michel, O. 1998.Webots: Symbiosis between virtual and real mobile robots. In Proceedings of the First International Conference on Virtual Worlds (VW '98) Paris, France, Springer Verlag, Berlin, Germany, pp. 254–263.Google Scholar
  38. Minar, N., Burkhart, R., Langton, C., and Askenazi, M. 1996.The swarm simulation system, a toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe Institute, New Mexico, USA.Google Scholar
  39. Murphy, R., Casper, J., Hyams, J., Micire, M., and Minten, B. 2000. Mobility and sensing demands in USAR. In Proceedings of the IEEE International Conference on Industrial Electronics, Control and Instrumentation (IECON 2000), vol. 1, IEEE Press: Piscataway, New Jersey, USA, pp. 138–142.Google Scholar
  40. Noda, I. 1995. Soccer server: A simulator of robocup. In Proceedings of the AI symposium '95, Japanese Society for Artificial Intelligence, Tokyo, Japan, pp. 29–34.Google Scholar
  41. Parker, L.E. 1998. Alliance: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation, 14(2):223–245.Google Scholar
  42. Parker, L.E., Bekey, G., and Barhen, J. (Eds.) 2000. Distributed Autonomous Robotic Systems 4. Springer Verlag, Berlin, Germany. Collection of accepted papers to DARS 2000.Google Scholar
  43. Pettinaro, G.C., Kwee, I.W., and Gambardella, L.M. 2003. Acceleration of 3D dynamics simulation of S-Bot mobile robots using multi-level model switching. Technical Report IDSIA-20-03, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA).Google Scholar
  44. Pettinaro, G.C., Kwee, I.W., Gambardella, L.M., Mondada, F., Floreano, D., Nolfi, S., Deneubourg, J.-L., and Dorigo, M. 2002. Swarm robotics: A different approach to service robotics. In Proceedings of the 33rd International Symposium on Robotics (ISR 2002), International Federation of Robotics: Paris, France, pp. 71–76.Google Scholar
  45. ?ahin, E., Labella, T.H., Trianni, V., Deneubourg, J.-L., Rasse, P., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., and Dorigo, M. 2002. SWARM-BOT: Pattern formation in a swarm of self-assembling mobile robots. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '02), vol. 4., IEEE Press: Piscataway, New Jersey, USA.Google Scholar
  46. Salemi, B., Shen, W.-M., and Will, P. 2001. Hormone controlled metamorphic robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001), H.K. Wook et al. (Ed.), IEEE Press: Piscataway, New Jersey, USA, pp. 4194–4199.Google Scholar
  47. Sims, K. 1994. Evolving virtual creatures. In Proceedings of the 1994 ACM Conference on Computer Graphics (SIGGRAPH '94), ACM: New York, USA, pp. 15–22.Google Scholar
  48. Stengel, R.F. 1991. Intelligent failure-tolerant control. IEEE Control Systems Magazine, 11(4):14–23.Google Scholar
  49. Stone, H.W. 1996. Mars pathfinder microrover: A low-cost, low-power spacecraft. In Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics, Madison, Wisconsin, USA.Google Scholar
  50. Støy, K., Shen, W.-M., and Will, P. 2002. Global locomotion from local interaction in self-Reconfigurable robots. In Proceedings of the 7th International Conference on Intelligent Autonomous Systems (IAS-7), C.T.M. Gini, W.-M. Shen, and H. Yuasa (Eds.), IOS Press: Amsterdam, The Netherlands, pp. 309–316.Google Scholar
  51. Vandapel, N., Moorehead, S., Whittaker, W.R., Chatila, R., and Murrieta-Cid, R. 1999. Preliminary results on the use of stereo, color cameras and laser sensors in antarctica. In Experimental Robotics VI, Proceedings of 6th International Symposium on Experimental Robotics (ISER 1999) P.I. Corke and J. Trevelyan (Eds.), vol. 250 of Lecture Notes in Control and Information Sciences. Springer Verlag: Berlin, Germany.Google Scholar
  52. Visentin, G., Winnendael, M.V., and Putz, P. 2001. Advanced mechatronics in ESA space robotics developments. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) vol. 2, T.J.T. et al. (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 1261–1266.Google Scholar
  53. Wilson, M., Melhuish, C., Sendova-Franks, A.B., and Scholes, S. 2004. Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Autonomous Robots, 17(2/3) 115–136.Google Scholar
  54. Yim, M., Duff, D.G., and Roufas, K.D. 2000a. PolyBot: A modular reconfigurable robot. In Proc. of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), vol. 1, IEEE Press: Piscataway, New Jersey, USA, pp. 514–520.Google Scholar
  55. Yim, M., Duff, D.G., and Roufas, K.D. 2000b. PolyBot: A modular reconfigurable robot. In Proc. of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), vol. 1, IEEE Press: Piscataway, New Jersey, USA, pp. 514–520.Google Scholar
  56. Yim, M., Zhang, Y., and Duff, D. 2002. Modular robots. IEEE Spectrum, 39(2):30–34.Google Scholar
  57. Zhang, Y., Roufas, K.D., and Yim, M. 2001. Software architecture for modular self-reconfigurable robots. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2001 vol. 4, T.J.T. et al. (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 2355–2360.Google Scholar
  58. Zhang, Y., Yim, M., Eldershaw, C., Duff, D., and Roufas, K. 2003. Phase automata: A programming model of locomotion gaits for scalable chain-type modular robots. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS 2003) C.S.G. Lee and J. Yuh (Eds.), IEEE Press: Piscataway, New Jersey, USA, pp. 2442–2447.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Francesco Mondada
  • Giovanni C. Pettinaro
  • Andre Guignard
  • Ivo W. Kwee
  • Dario Floreano
  • Jean-Louis Deneubourg
  • Stefano Nolfi
  • Luca Maria Gambardella
  • Marco Dorigo

There are no affiliations available

Personalised recommendations