Advertisement

Automation and Remote Control

, Volume 65, Issue 6, pp 871–892 | Cite as

Large Systems of Boolean Functions: Realization by Modular Arithmetic Methods

  • O. A. Fin'ko
Article

Abstract

Modular polynomial and spectral arithmetic-logical forms are introduced for representing Boolean functions so as to determine certain useful properties associated with the restricted number range (solution of the problem of large coefficients of arithmetical polynomials) in parallel logical computations.

Keywords

Mechanical Engineer System Theory Boolean Function Large System Number Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Malyugin, V.D., Parallel'nye logicheskie vychisleniya posredstvom arifmeticheskikh polinomov (Parallel Logical Computation through Arithmetical Polynomials), Moscow: Nauka, 1997.Google Scholar
  2. 2.
    Malyugin, V.D., Realization of Boolean Functions by Arithmetical Polynomials, Avtom. Telemekh., 1982, no. 4, pp. 84–93.Google Scholar
  3. 3.
    Malyugin, V.D., Realization of a Cortege of Boolean Functions by Linear Arithmetical Polynomials, Avtom. Telemekh., 1984, no. 2, pp. 114–121.Google Scholar
  4. 4.
    Thornton, M.A., Dreschler, R., and Miller D.M., Spectral Techniques in VLSI CAD, London: Kluwer Academic, 2002.Google Scholar
  5. 5.
    Heidtmann, K.D., Arithmetic Spectrum Applied to Fault Detection for Combinational Natworks, IEEE Trans. Comput., 1991, vol. 40, no. 3, pp. 320–324.Google Scholar
  6. 6.
    Shmerko, V.P., Design of Arithmetical Forms of Boolean Functions by Fourier Transformation, Avtom. Telemekh., 1989, no. 5, pp. 134–142.Google Scholar
  7. 7.
    Kukharev, G.A., Shmerko, V.P., and Zaitseva, E.N., Algoritmy i sistolicheskie protsessory dlya obrabotki mnogoznachnykh dannykh (Algorithms and Systolic Processors for Processing Multi-Valued Data), Minsk: Nauka i Tekhnika, 1990.Google Scholar
  8. 8.
    Akritas A.G., Elements of Computer Algebra, New York: Wiley, 1989. Translated under the title Osnovy komp'yuternoi algebry s prilozheniyami, Moscow: Mir, 1994.Google Scholar
  9. 9.
    Knuth, D.E., The Art of Computer Programming, vol. 2, Seminumerical Algorithms, Reading: Addison-Wesley, 1969. Translated under the title Iskusstvo programmirovaniya, tom 2, poluchislennye algoritmy, Moscow: Williams, 2000.Google Scholar
  10. 10.
    Amerbaev, V.M., Teoreticheskie osnovy mashinnoi arifmetiki (Theoretical Principles of Machine Arithmetic), Alma-Ata: Nauka, 1976.Google Scholar
  11. 11.
    Yanushkevich, S., Shmerko, V., and Dziurzanski, P., Word Level Decision Diagrams Upon the Conditions of Linearity, IEEE Trans. Comput. Design Integrated Syst., 2001, vol. XX, no. Y, pp. 1–40.Google Scholar
  12. 12.
    Shmerko, V.P., Malyugin's Theorem: A New Concept in Logical Control, VLSI Design, and Data Structures for New Technologies, Avtom. Telemekh., 2004, no. 6.Google Scholar
  13. 13.
    Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., and Tailor, F.J., Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, New York: IEEE Press, 1986.Google Scholar
  14. 14.
    Maclellan, J.H. and Rader, C.M., Number Theory in Digital Signal Processing, Englewood Cliffs: Prentice Hall, 1979. Translated under the title Primenenie teorii chisel v tsifrovoi obrabotke signalov, Moscow: Radio i Svyaz', 1983.Google Scholar
  15. 15.
    Kravchenko, V.F. and Krot, A.M., Methods and Microelectronic Tools for Digital Signal Filtration and Imaging based on Number Theoretic Transforms, Zarubezh. Radioelektr. Usp. Sovrem. Radioelektr., 1997, no. 6, pp. 3–31.Google Scholar
  16. 16.
    Chervyakov, N.I., Korshunov, O.E., and Fin'ko, O.A., Converter of Codes from a System of Residue Classes into Positional Codes, Patent no. 1388996, Byul. Izobret., 1988, no. 14, p.167.Google Scholar
  17. 17.
    Fin'ko, O.A., Reproduction of a Number in a System of Residual Classes with Minimal Number of Bases, Elektron. Modelir., 1998, vol. 20, no. 3, pp. 56–61.Google Scholar
  18. 18.
    Fin'ko, O.A., Different Variants of the Chinese Remainder Theorem for Technical Realization, Proc. Int. Congr. “Mathematics in the XXI Century. Role of MMF-NGU in Science, Education, and Business,” Novosibirsk, 2003.Google Scholar
  19. 19.
    Naudin, P. and Quitte, C., Algorithmique algebrique, Paris: Masson, 1992. Translated under the title Algebraicheskaya algoritmika, Moscow: Mir, 1999.Google Scholar
  20. 20.
    Chervyakov, N.I., Korshunov, O.E., and Fin'ko, O.A., A Converter of Codes from a System of Residue Classes into Positional Codes, Patent no. 1343553, Byul. Izobret., 1987. no. 37, p. 288.Google Scholar
  21. 21.
    Fin'ko, O.A., Control and Reconfiguration of Analog-Digital Devices Operating in a System of Residue Classes, Elektron. Modelir., 2000, vol. 22, no. 4, pp. 92–103.Google Scholar
  22. 22.
    Fin'ko, O.A., Methods of Problem-Oriented Representation and Data Processing in Resources of the Hardware Support of Intellectual Systems, Proc. IEEE Conf. Artificial Intelligence Syst. (AIS'02), Divnomorskoe, September 5-10, 2002, pp. 453–454.Google Scholar
  23. 23.
    Fin'ko, O.A., Superparallel Logical Computations by Modular Arithmetic Methods, Proc. Int. Conf. “Artificial Intelligent Systems” (IEEE AIS'02) and “Intelligent CAD” (CAD-2002), Moscow: Nauka, 2002, pp. 448–455.Google Scholar
  24. 24.
    Fin'ko, O.A., Modular Forms of Arithmetical Polynomials for Realization of Systems of Boolean Functions, Proc. Int. Conf. “Artificial Intelligent Systems” (IEEE AIS'03) and “Intelligent CAD” (CAD-2003), Moscow: Nauka, 2003, pp. 611–619.Google Scholar
  25. 25.
    Fin'ko, O.A., Parallel Logical Computations using Redundant Number Representations, Proc. II Int. Conf. “Identification of Systems and Control Problems” (SICPRO'03), Moscow: Inst. Problem Upravlen., 2003, pp. 1716–1728.Google Scholar
  26. 26.
    Fin'ko, O.A., Logical Computations via Number Theoretic Transforms Proc. II Int. Conf. Control Problems, Moscow: Inst. Problem Upravlen., 2003.Google Scholar
  27. 27.
    Bukhshtab, A.A. Teoriya chisel (Number Theory), Moscow: Prosveshchnie, 1966.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • O. A. Fin'ko
    • 1
  1. 1.KrasnodarRussia

Personalised recommendations