Advertisement

Automation and Remote Control

, Volume 65, Issue 4, pp 634–641 | Cite as

Method of Analogs in Prediction of Short Time Series: An Expert-statistical Approach

  • A. S. Mandel'
Article

Abstract

Prediction of the time series from short data samples was considered. An expert-statistical approach based on specially designed methods for joint use of the subjective and objective data was proposed for handling this problem. Its solution relies on the scheme of expert-statistical processing called the analog method.

Keywords

Time Series Mechanical Engineer System Theory Objective Data Analog Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Box, G.E.P. and Jenkins, G.M., Time Series Analysis-Forecasting and Control, San Francisco: Holden-Day, 1970.Google Scholar
  2. 2.
    Mandel', A.S., Adaptive Expert-statistical Systems, Dokl. III Vses. shkoly-seminara “Kombinatornostatisticheskie metody analiza i obrabotki informatsii. Ekspertnoe otsenivanie” (Proc. III All-Union Workshop “Combinatorial Statistical Methods of Analysis and Processing of Information”), Odessa, 1990.Google Scholar
  3. 3.
    Mandel', A.S., Expert-statistical Systems in Control and Information Processing. I, Prib. Sist. Upravlen., 1996, no. 12.Google Scholar
  4. 4.
    Mandel', A.S., Expert-statistical Systems in Control and Information Processing. II, Prib. Sist. Upravlen., 1997, no. 1.Google Scholar
  5. 5.
    Gaponenko, I.V. and Muchnik, I.B., Construction of Suficient Attributes and Decision Rules in Pattern Recognition Using Expert Information, in Metody sbora i analiza slozhnoorganizovannykh dannykh, Sb. tr. (Collected Papers on Methods for Collection and Analysis of Complex Data), Moscow: Inst. Probl. Upravlen., 1991.Google Scholar
  6. 6.
    Dorofeyuk, A.A. and Chernyavskii, A.L., Experience in Using Expert Commissions in OrganizationManagement, in Metody i algoritmy analiza empiricheskikh dannykh (Methods and Algorithms of Analysis of Empirical Data), Moscow: Inst. Probl. Upravlen., 1988.Google Scholar
  7. 7.
    Golovchenko, V.B., Prognozirovanie vremennykh ryadov po raznorodnoi informatsii (Prediction of Time Series from Diverse Information), Novosibirsk: Nauka, 1999.Google Scholar
  8. 8.
    Golovchenko, V.B., Prediction of Time Series from Expert Statements, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1991, no. 3, pp. 47–51.Google Scholar
  9. 9.
    Golovchenko, V.B. and Noskov, S.I., Combining Prediction with Regard for Expert Information, Avtom. Telemekh., 1992, no. 11, pp. 109–117.Google Scholar
  10. 10.
    Tsypkin, Ya.Z., Osnovy informatsionnoi teorii identifikatsii (Fundamentals of the Informational Identification Theory), Moscow: Nauka, 1984.Google Scholar
  11. 11.
    Dorofeyuk, A.A., Automatic Classification Algorithms, Avtom. Telemekh., 1971, no. 12.Google Scholar
  12. 12.
    Bauman, E.V. and Dorofeyuk, A.A., Variational Approach to Automatic Classification for One Class of Addtive Functionals, Avtom. Telemekh., 1978, no. 8.Google Scholar
  13. 13.
    Bauman, E.V. and Dorofeyuk, A.A., Recurrent Algorithms of Automatic Classification, Avtom. Telemekh., 1982, no. 3.Google Scholar
  14. 14.
    Bauman, E.V., Methods of Fuzzy Classification (Variational Approach), Avtom. Telemekh., 1988, no. 12.Google Scholar
  15. 15.
    Bauman, E.V. and Dorofeyuk, A.A., Classification Data Analysis, in Izbr. tr. Mezhdunar. konf. po problemam upravleniya (Int. Conf. on Control Sciences, Selected Papers), Moscow: SINTEG, 1999, vol. 1.Google Scholar
  16. 16.
    Mandel', A.S., Methods for Improving Reliability of Conclusions in Expert-statistical Systems, in Trudy Inst. Probl. Upravlen., Moscow: Inst. Probl. Upravlen., 2000, vol. 10.Google Scholar
  17. 17.
    Belyakov, A.G. and Mandel', A.S., Prediction of Time Series on the Basis of Analog Methods (Elements of the Theory of Expert-statistical Systems), Preprint of Inst. of Control Sci., Moscow, 2002.Google Scholar
  18. 18.
    Belyakov, A.G. and Mandel', A.S., Analysis of Reliability of Conclusions Generated by Means of Expert-statistical Systems, Preprint of Inst. of Control Sci., Moscow, 2002.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. S. Mandel'
    • 1
  1. 1.Trapeznikov Institute of Control Sciences, Russian Academy of SciencesMoscowRussia

Personalised recommendations